高等学校化学研究 ›› 2021, Vol. 37 ›› Issue (3): 379-393.doi: 10.1007/s40242-021-1123-5
ZHANG Xiuling1,2,3, GUO Shiquan1,2,3, QIN Yue1,2,3, LI Congju1,2,3
收稿日期:
2021-03-15
修回日期:
2021-04-07
出版日期:
2021-06-01
发布日期:
2021-05-08
通讯作者:
LI Congju
E-mail:congjuli@126.com
基金资助:
ZHANG Xiuling1,2,3, GUO Shiquan1,2,3, QIN Yue1,2,3, LI Congju1,2,3
Received:
2021-03-15
Revised:
2021-04-07
Online:
2021-06-01
Published:
2021-05-08
Contact:
LI Congju
E-mail:congjuli@126.com
Supported by:
摘要: Electrospinning with a simple and controllable process has extremely received considerable concerns by virtue of the fabrication and development of nanofibers. Moreover, nanofibers are playing an increasing impact on energy conversion and storage devices, especially for fuel cells based on oxygen reduction reaction(ORR), in view of the rich porosity, large surface area, excellent mass transportation and simply tunable composition, as well as good mechanical strength. In this review, we mainly introduce the primary principle of electrospinning technique, electrochemical reaction mechanism of ORR and synthetic strategies, and summarize the recent advances of unique non-noble-metal nanofibers on the basis of metal-organic framework(MOF) derivatives, single-atom catalysts(SACs) and transition metal oxides. More importantly, we emphasize on the influences of the components, morphology and architecture of advanced electrospun catalysts on their correspon-ding electrochemical performances towards ORR. Finally, the remaining puzzles and perspectives for further development of the electrospinning nanofibers involving electrocatalysis are presented. It is envisioned that this review would offer an important direction in designing novel electrocatalysts based on electrospinning nanofibrous structures and developing their potential.
ZHANG Xiuling, GUO Shiquan, QIN Yue, LI Congju. Functional Electrospun Nanocomposites for Efficient Oxygen Reduction Reaction[J]. 高等学校化学研究, 2021, 37(3): 379-393.
ZHANG Xiuling, GUO Shiquan, QIN Yue, LI Congju. Functional Electrospun Nanocomposites for Efficient Oxygen Reduction Reaction[J]. Chemical Research in Chinese Universities, 2021, 37(3): 379-393.
[1] | Höök M., Tang X., Energy Policy, 2013, 52, 797 |
[2] | Abas N., Kalair A., Khan N., Futures, 2015, 69, 31 |
[3] | Chen Z., Yu A., Higgins D., Li H., Wang H., Chen Z., Nano Letters, 2012, 12(4), 1946 |
[4] | Kirubakaran A., Jain S., Nema R. K., Renewable, Sustainable Energy Reviews, 2009, 13(9), 2430 |
[5] | Shi W., Wang Y. C., Chen C., Yang X. D., Zhou Z. Y., Sun S. G., Chinese Journal of Catalysis, 2016, 37(7), 1103 |
[6] | Xiong Y., Xiao L., Yang Y., DiSalvo F. J., Abruña H. D., Chemistry of Materials, 2018, 30(5), 1532 |
[7] | Higgins D. C., Wang R., Hoque M. A., Zamani P., Abureden S., Chen Z., Nano Energy, 2014, 10, 135 |
[8] | Shui J.-I., Chen C., Li J. C. M., Advanced Functional Materials, 2011, 21(17), 3357 |
[9] | Xue Q., Ding Y., Xue Y., Li F., Chen P., Chen Y., Carbon, 2018, 139, 137 |
[10] | Zhang S., Cai Y., He H., Zhang Y., Liu R., Cao H., Wang M., Liu J., Zhang G., Li Y., Liu H., Li B., Journal of Materials Chemistry A, 2016, 4(13), 4738 |
[11] | Yuan Y., Wang J., Adimi S., Shen H., Thomas T., Ma R., Attfield J. P., Yang M., Nature Materials, 2020, 19(3), 282 |
[12] | Li X., Popov B. N., Kawahara T., Yanagi H., Journal of Power Sources, 2011, 196(4), 1717 |
[13] | Domínguez C., Pérez-Alonso F. J., Salam M. A., de la Fuente J. L. G., Al-Thabaiti S. A., Basahel S. N., Peña M. A., Fierro J. L. G., Rojas S., International Journal of Hydrogen Energy, 2014, 39(10), 5309 |
[14] | Wang C., Chen W., Xia K., Xie N., Wang H., Zhang Y., Small, 2019, 15(7), 1804966 |
[15] | Yuan W., Xie A., Li S., Huang F., Zhang P., Shen Y., Energy, 2016, 115, 397 |
[16] | Kim D.-W., Li O. L., Saito N., Physical Chemistry Chemical Physics, 2015, 17(1), 407 |
[17] | Gao S., Liu H., Geng K., Wei X., Nano Energy, 2015, 12, 785 |
[18] | Xu J., Gao P., Zhao T. S., Energy Environmental Science, 2012, 5(1), 5333 |
[19] | Liang Y., Wang H., Zhou J., Li Y., Wang J., Regier T., Dai H., Journal of the American Chemical Society, 2012, 134(7), 3517 |
[20] | Guo D., Han S., Ma R., Zhou Y., Liu Q., Wang J., Zhu Y., Microporous and Mesoporous Materials, 2018, 270, 1 |
[21] | Chen L., Zhang Y., Dong L., Liu X., Long L., Wang S., Liu C., Dong S., Jia J., Carbon, 2020, 158, 885 |
[22] | Zhang J., Chen J., Jiang Y., Zhou F., Wang G., Wang R., Applied Surface Science, 2016, 389, 157 |
[23] | Zhao Z., Li M., Zhang L., Dai L., Xia Z., Advanced Materials, 2015, 27(43), 6834. |
[24] | Guo H., Feng Q., Zhu J., Xu J., Li Q., Liu S., Xu K., Zhang C., Liu T., Journal of Materials Chemistry A, 2019, 7(8), 3664 |
[25] | Wang J., Han G., Wang L., Du L., Chen G., Gao Y., Ma Y., Du C., Cheng X., Zuo P., Yin G., Small, 2018, 14(15), 1704282 |
[26] | Li S., Chen W., Pan H., Cao Y., Jiang Z., Tian X., Hao X., Maiyalagan T., Jiang Z. J., ACS Sustainable Chemistry & Engineering, 2019, 7(9), 8530 |
[27] | Wu X. Q., Zhao J., Wu Y. P., Dong W. W., Li D. S., Li J. R., Zhang Q., ACS Applied Materials Interfaces, 2018, 10(15), 12740 |
[28] | Li Y., Zhao T., Lu M., Wu Y., Xie Y., Xu H., Gao J., Yao J., Qian G., Zhang Q., Small, 2019, 15(43), 1901940 |
[29] | Zhou K., Zhang C., Xiong Z., Chen H. Y., Li T., Ding G., Yang B., Liao Q., Zhou Y., Han S. T., Advanced Functional Materials, 2020, 30(38), 2001296 |
[30] | Wang K., Wang Z., Liu J., Li C., Mao F., Wu H., Zhang Q., ACS Applied Materials Interfaces, 2020, 12(42), 47482 |
[31] | Wang K., Bi R., Huang M., Lv B., Wang H., Li C., Wu H., Zhang Q., Inorganic Chemistry, 2020, 59(10), 6808 |
[32] | Li C., Wang K., Li J., Zhang Q., Nanoscale, 2020, 12(14), 7870 |
[33] | Peng L., Zhang X., Sun Y., Xing Y., Li C., Environmental Research, 2020, 188, 109742 |
[34] | Chen X., Wang N., Shen K., Xie Y., Tan Y., Li Y., ACS Applied Materials Interfaces, 2019, 11(29), 25976 |
[35] | Jing Y., Cheng Y., Wang L., Liu Y., Yu B., Yang C., Chemical Engineering Journal, 2020, 397, 125539 |
[36] | Aravindan V., Suresh Kumar P., Sundaramurthy J., Ling W. C., Ramakrishna S., Madhavi S., Journal of Power Sources, 2013, 227, 284 |
[37] | Ramadan M., Abdellah A. M., Mohamed S. G., Allam N. K., Scientific Reports, 2018, 8(1), 7988 |
[38] | Park H. W., Lee D. U., Zamani P., Seo M. H., Nazar L. F., Chen Z., Nano Energy, 2014, 10, 192 |
[39] | Zamani P., Higgins D., Hassan F., Jiang G., Wu J., Abureden S., Chen Z., Electrochimica Acta, 2014, 139, 111 |
[40] | Zhang X., Fan W., Li H., Zhao S., Wang J., Wang B., Li C., Journal of Materials Chemistry A, 2018, 6(43), 21458 |
[41] | Zhang X., Gong Y., Li S., Sun C., ACS Catalysis, 2017, 7(11), 7737 |
[42] | Yang W., Li N.W., Zhao S., Yuan Z., Wang J., Du X., Wang B., Cao R., Li X., Xu W., Wang Z. L., Li C., Advanced Materials Technologies, 2018, 3(2), 1700241 |
[43] | Wang D. C., Yu H. Y., Qi D., Ramasamy M., Yao J., Tang F., Tam K. M. C., Ni Q., ACS Applied Materials Interfaces, 2019, 11(27), 24435 |
[44] | Aghayan M., Hussainova I., Kirakosyan K., Rodríguez M. A., Materials Chemistry and Physics, 2017, 192, 138 |
[45] | Formhals A., Process and Apparatus for Preparing Artificial Threads, US Patent, 1934, 1975504 |
[46] | Reneker D. H., Chun I., Nanotechnology, 1996, 7, 216 |
[47] | Doshi J., Reneker D. H., Journal of Electrostatics, 1995, 35, 151 |
[48] | Long Y. Z., Yan X., Wang X. X., Zhang J., Yu M., Electrospinning:the setup and procedure, William Andrew Publishing, New York City, 2019, 21 |
[49] | Stacy J., Regmi Y. N., Leonard B., Fan M., Renewable and Sustainable Energy Reviews, 2017, 69, 401 |
[50] | Xiong D., Li X., Fan L., Bai Z., Catalysts, 2018, 8(8), 301 |
[51] | Lu X. F., Xia B. Y., Zang S. Q., Lou X. W. D., Angewandte Chemie International Edition, 2020, 59(12), 4634 |
[52] | Bai Q., Shen F. C., Li S. L., Liu J., Dong L. Z., Wang Z. M., Lan Y. Q., Small Methods, 2018, 2(12), 1800049 |
[53] | Chen Y., Zhang W., Zhu Z., Zhang L., Yang J., Chen H., Zheng B., Li S., Zhang W., Wu J., Huo F., Journal of Materials Chemistry A, 2020, 8(15), 7184 |
[54] | Razzaq A. A., Yuan X., Chen Y., Hu J., Mu Q., Ma Y., Zhao X., Miao L., Ahn J.-H., Peng Y., Deng Z., Journal of Materials Chemistry A, 2020, 8(3), 1298 |
[55] | Ji D., Peng S., Fan L., Li L., Qin X., Ramakrishna S., Journal of Materials Chemistry A, 2017, 5(45), 23898 |
[56] | Etogo C. A., Huang H., Hong H., Liu G., Zhang L., Energy Storage Materials, 2020, 24, 167 |
[57] | Li B., Igawa K., Chai J., Chen Y., Wang Y., Fam D. W., Tham N. N., An T., Konno T., Sng A., Liu Z., Zhang H., Zong Y., Energy Storage Materials, 2020, 25, 137 |
[58] | Zhao Y., Lai Q., Zhu J., Zhong J., Tang Z., Luo Y., Liang Y., Small, 2018, 14(19), 1704207 |
[59] | Lian Z., Huimin L., Zhaofei O., Dalton Transactions, 2014, 43(18), 6684 |
[60] | Gong T., Qi R., Liu X., Li H., Zhang Y., Nano-Micro Letters, 2019, 11(1), 9 |
[61] | Wang Y. J., Fang B., Zhang D., Li A., Wilkinson D. P., Ignaszak A., Zhang L., Zhang J., Electrochemical Energy Reviews, 2018, 1(1), 1 |
[62] | Lai Q., Zhao Y., Liang Y., He J., Chen J., Advanced Functional Materials, 2016, 26(45), 8334 |
[63] | Xie J., Li B. Q., Peng H. J., Song Y. W., Li J. X., Zhang Z. W., Zhang Q., Angewandte Chemie International Edition, 2019, 58(15), 4963 |
[64] | Zhang X., Fan W., Zhao S., Cao R., Li C., Catalysis Science & Technology, 2019, 9(8), 1998 |
[65] | Li M., Xiong Y., Liu X., Han C., Zhang Y., Bo X., Guo L., Journal of Materials Chemistry A, 2015, 3(18), 9658 |
[66] | Tan H., Tang J., Kim J., Kaneti Y. V., Kang Y. M., Sugahara Y., Yamauchi Y., Journal of Materials Chemistry A, 2019, 7(4), 1380 |
[67] | Zhu C., Shi Q., Xu B. Z., Fu S., Wan G., Yang C., Yao S., Song J., Zhou H., Du D., Beckman S. P., Su D., Lin Y., Advanced Energy Materials, 2018, 8(29), 1801956 |
[68] | Palaniselvam T., Kashyap V., Bhange S. N., Baek J. B., Kurungot S., Advanced Functional Materials, 2016, 26(13), 2150 |
[69] | Ma S., Goenaga G. A., Call A. V., Liu D. J., Chemistry, 2011, 17(7), 2063 |
[70] | Liu C., Wang J., Li J., Liu J., Wang C., Sun X., Shen J., Han W., Wang L., Journal of Materials Chemistry A, 2017, 5(3), 1211 |
[71] | Zhang C. L., Lu B. R., Cao F. H., Wu Z. Y., Zhang W., Cong H. P., Yu S. H., Nano Energy, 2019, 55, 226 |
[72] | Zhao S., Wang J., Du X., Wang J., Cao R., Yin Y., Zhang X., Yuan Z., Xing Y., Pui D. Y. H., Li C., ACS Applied Energy Materials, 2018, 1(5), 2326 |
[73] | Zhang X., Zhao S., Fan W., Wang J., Li C., Electrochimica Acta, 2019, 301, 304 |
[74] | Ji D., Fan L., Li L., Mao N., Qin X., Peng S., Ramakrishna S., Carbon, 2019, 142, 379 |
[75] | Gou W., Bian J., Zhang M., Xia Z., Liu Y., Yang Y., Dong Q., Li J., Qu Y., Carbon, 2019, 155, 545 |
[76] | Yang L., Zeng X., Wang D., Cao D., Energy Storage Materials, 2018, 12, 277 |
[77] | Singh S. K., Kumar D., Dhavale V. M., Pal S., Kurungot S., Advanced Materials Interfaces, 2016, 3(20), 1600532 |
[78] | Gong M., Dai H., Nano Research, 2014, 8(1), 23 |
[79] | Wang Z., Ang J., Zhang B., Zhang Y., Ma X. Y. D., Yan T., Liu J., Che B., Huang Y., Lu X., Applied Catalysis B:Environmental, 2019, 254, 26 |
[80] | Cheng Q., Han S., Mao K., Chen C., Yang L., Zou Z., Gu M., Hu Z., Yang H., Nano Energy, 2018, 52, 485 |
[81] | Yu K., Shi P. H., Fan J. C., Min Y. L., Xu Q. J., Journal of Nanoparticle Research, 2019, 21(11), 1 |
[82] | Guo J., Gao M., Nie J., Yin F., Ma G., Journal of Colloid and Interface Science, 2019, 544, 112 |
[83] | Peng W., Yang X., Mao L., Jin J., Yang S., Zhang J., Li G., Chemical Engineering Journal, 2021, 407, 127157 |
[84] | Li H., An M., Zhao Y., Pi S., Li C., Sun W., Wang H. G., Applied Surface Science, 2019, 478, 560 |
[85] | Cao J., Gong H., Xie L., Li Y., Zhang N., Tian W., Zhang R., Zhou J., Wang T., Zhai Y., Li N., Luo M., Liang K., Chen P., Kong B., Materials Today Energy, 2021, 100682 |
[86] | Yao X., Li J., Zhu Y., Li L., Zhang W., Composites Part B:Engineering, 2020, 193, 108058 |
[87] | Niu Q., Chen B., Guo J., Nie J., Guo X., Ma G., Nano-Micro Letters, 2019, 11(1), 8 |
[88] | Yang L., Feng S., Xu G., Wei B., Zhang L., ACS Sustainable Chemistry & Engineering, 2019, 7(5), 5462 |
[89] | Wang Z., Ang J., Liu J., Ma X. Y. D., Kong J., Zhang Y., Yan T., Lu X., Applied Catalysis B:Environmental, 2020, 263, 118344 |
[90] | Liu P., Yao Y., Zhang S., Liu L., Zeng S., Li Z., Jiang S., Zhang Q., Zeng X., Zou J., Journal of Materials Science:Materials in Electronics, 2020, 31(10), 7596 |
[91] | Feng C., Guo Y., Xie Y., Cao X., Li S., Zhang L., Wang W., Wang J., Nanoscale, 2020, 12(10), 5942 |
[92] | Beniya A., Higashi S., Nature Catalysis, 2019, 2(7), 590 |
[93] | Zhang H., Liu G., Shi L., Ye J., Advanced Energy Materials, 2018, 8(1), 1701343 |
[94] | Hou C. C., Zou L., Sun L., Zhang K., Liu Z., Li Y., Li C., Zou R., Yu J., Xu Q., Angewandte Chemie, 2020, 59(19), 7384 |
[95] | Dong L., Zang J., Wang W., Liu X., Zhang Y., Su J., Wang Y., Han X., Li J., Journal of Colloid and Interface Science, 2020, 564, 134 |
[96] | Wang X. X., Prabhakaran V., He Y., Shao Y., Wu G., Advanced Materials, 2019, 31(31), 1805126 |
[97] | He Y., Guo H., Hwang S., Yang X., He Z., Braaten J., Karakalos S., Shan W., Wang M., Zhou H., Feng Z., More K. L., Wang G., Su D., Cullen D. A., Fei L., Litster S., Wu G., Advanced Materials, 2020, 32(46), 2003577 |
[98] | Ji D., Fan L., Li L., Peng S., Yu D., Song J., Ramakrishna S., Guo S., Advanced Materials, 2019, 31(16), 1808267 |
[99] | Huang K., Sun Y., Zhang Y., Wang X., Zhang W., Feng S., Advanced Materials, 2019, 31(38), 1801430 |
[100] | Wang H., Zhou Y., Zhang S., Deng C., Chemical Engineering Journal, 2021, 407, 127043 |
[101] | Huang Y., Miao Y. E., Lu H., Liu T., Chemistry, 2015, 21(28), 10100 |
[102] | Yan J., Wang Y., Zhang Y., Xia S., Yu J., Ding B., Advanced Materials, 2021, 33(5), 2007525 |
[103] | Lv J., Abbas S. C., Huang Y., Liu Q., Wu M., Wang Y., Dai L., Nano Energy, 2018, 43, 130 |
[104] | Zeng Z., Zhang T., Liu Y., Zhang W., Yin Z., Ji Z., Wei J., ChemSusChem, 2018, 11(3), 580 |
[105] | Zou X., Li Z., Xie Y., Wu H., Lin S., International Journal of Hydrogen Energy, 2020, 45(55), 30647 |
[106] | Zhang B., Wang S., Fan W., Ma W., Liang Z., Shi J., Liao S., Li C., Angewandte Chemie, 2016, 55(47), 14748 |
[107] | He Q., Zhou F., Zhan S., Huang N., Tian Y., Applied Surface Science, 2018, 430, 325 |
[108] | Sun Q., Wu S., Li K., Han B., Chen Y., Pang B., Yu L., Dong L., Applied Surface Science, 2020, 516, 146142 |
[109] | Tomon C., Sarawutanukul S., Duangdangchote S., Krittayavathananon A., Sawangphruk M., ECS Transactions, 2020, 97(7), 71 |
[110] | Sakai Y., Yang J., Yu R., Hojo H., Yamada I., Miao P., Lee S., Torii S., Kamiyama T., Lezaic M., Bihlmayer G., Mizumaki M., Komiyama J., Mizokawa T., Yamamoto H., Nishikubo T., Hattori Y., Oka K., Yin Y., Dai J., Li W., Ueda S., Aimi A., Mori D., Inaguma Y., Hu Z., Uozumi T., Jin C., Long Y., Azuma M., Journal of the American Chemical Society, 2017, 139(12), 4574 |
[111] | Peng S., Han X., Li L., Chou S., Ji D., Huang H., Du Y., Liu J., Ramakrishna S., Advanced Energy Materials, 2018, 8(22), 1800612 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||