高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (3): 377-385.doi: 10.1007/s40242-020-0103-5
YUAN Hong1,2, LIU Jia2,3, LU Yang2, ZHAO Chenzi2, CHENG Xinbing2, NAN Haoxiong4, LIU Quanbing4, HUANG Jiaqi1, ZHANG Qiang2
收稿日期:
2020-04-11
修回日期:
2020-05-01
出版日期:
2020-06-01
发布日期:
2020-05-30
通讯作者:
ZHANG Qiang
E-mail:zhang-qiang@mails.tsinghua.edu.cn
基金资助:
YUAN Hong1,2, LIU Jia2,3, LU Yang2, ZHAO Chenzi2, CHENG Xinbing2, NAN Haoxiong4, LIU Quanbing4, HUANG Jiaqi1, ZHANG Qiang2
Received:
2020-04-11
Revised:
2020-05-01
Online:
2020-06-01
Published:
2020-05-30
Contact:
ZHANG Qiang
E-mail:zhang-qiang@mails.tsinghua.edu.cn
Supported by:
摘要: Sulfide-based solid-state electrolytes with ultrahigh lithium ion conductivities have been considered as the most promising electrolyte system to enable practical all-solid-state batteries. However, the practical applications of the sulfide-based all-solid-state batteries are hindered by severe interfacial issues as well as large-scale material preparation and battery fabrication problems. Liquid-involved interfacial treatments and preparation processes compatible with current battery manufacturing capable of improving electrode/electrolyte interface contacts and realizing the mass production of sulfide electrolytes and the scalable fabrication of sulfide-based battery component have attracted considerable attention. In this perspective, the current advances in liquid-involved treatments and processes in sulfide-based all-solid-state batteries are summarized. Then relative chemical mechanisms and existing challenges are included. Finally, future guidance is also proposed for sulfide-based batteries. Focusing on the sulfide-based all-solid-state batteries, we aim at providing a fresh insight on understandings towards liquid-involved processes and promoting the development of all-solid-state batteries with higher energy density and better safety.
YUAN Hong, LIU Jia, LU Yang, ZHAO Chenzi, CHENG Xinbing, NAN Haoxiong, LIU Quanbing, HUANG Jiaqi, ZHANG Qiang. Toward Practical All-solid-state Batteries with Sulfide Electrolyte: A Review[J]. 高等学校化学研究, 2020, 36(3): 377-385.
YUAN Hong, LIU Jia, LU Yang, ZHAO Chenzi, CHENG Xinbing, NAN Haoxiong, LIU Quanbing, HUANG Jiaqi, ZHANG Qiang. Toward Practical All-solid-state Batteries with Sulfide Electrolyte: A Review[J]. Chemical Research in Chinese Universities, 2020, 36(3): 377-385.
[1] | Armand M., Tarascon J. M., Nature, 2008, 451(7179), 652 |
[2] | Yuan H., Kong L., Li T., Zhang Q., Chin. Chem. Lett., 2017, 28(12), 2180 |
[3] | Aricò A. S., Bruce P., Scrosati B., Tarascon J. M., van Schalkwijk W., Nat. Mater., 2005, 4, 366 |
[4] | Yuan H., Huang J. Q., Peng H. J., Titirici M. M., Xiang R., Chen R., Liu Q., Zhang Q., Adv. Energy Mater., 2018, 8(31), 1802107 |
[5] | Zhang X., Cheng X., Zhang Q., J. Energy Chem., 2016, 25(6), 967 |
[6] | Dong W., Shen D., Yang S., Liang B., Wang X., Liu Y., Li S., Chem. Res. Chinese Universities, 2018, 34(2), 235 |
[7] | Yang C., Wang H. F., Xu Q., Chem. Res. Chinese Universities, 2020, 36(1), 10 |
[8] | Huang Y., Chin. Sci. Bull., 2019, 64(36), 3811 |
[9] | Jiang L., Cheng X. B., Peng H. J., Huang J. Q., Zhang Q., eTransportation, 2019, 2, 100033 |
[10] | Choi J. W., Aurbach D., Nat. Rev. Mater., 2016, 1(4), 16013 |
[11] | Cheng X. B., Zhang R., Zhao C. Z., Zhang Q., Chem. Rev., 2017, 117(15), 10403 |
[12] | Etacheri V., Marom R., Elazari R., Salitra G., Aurbach D., Energy Environ. Sci., 2011, 4(9), 3243 |
[13] | Liu J., Yuan H., Cheng X. B., Chen W. J., Titirici M. M., Huang J. Q., Yuan T. Q., Zhang Q., Mater. Today Nano, 2019, 8, 100049 |
[14] | Zhu X., Schulli T., Wang L., Chem. Res. Chinese Universities, 2020, 36(1), 24 |
[15] | Suo L., Hu Y., Li H., Wang Z., Chen L., Huang X., Chin. Sci. Bull., 2013, 58(31), 3172 |
[16] | Liang Y., Zhao C. Z., Yuan H., Chen Y., Zhang W., Huang J. Q., Yu D., Liu Y., Titirici M. M., Chueh Y. L., Yu H., Zhang Q., InfoMat, 2019, 1(1), 6 |
[17] | Xu R., Cheng X. B., Yan C., Zhang X. Q., Xiao Y., Zhao C. Z., Huang J. Q., Zhang Q., Matter, 2019, 1(2), 317 |
[18] | Yan C., Li H. R., Chen X., Zhang X. Q., Cheng X. B., Xu R., Huang J. Q., Zhang Q., J. Am. Chem. Soc., 2019, 141(23), 9422 |
[19] | Chung W. J., Griebel J. J., Kim E. T., Yoon H., Simmonds A. G., Ji H. J., Dirlam P. T., Glass R. S., Wie J. J., Nguyen N. A., Guralnick B. W., Park J., Somogyi Á., Theato P., Mackay M. E., Sung Y. E., Char K., Pyun J., Nat. Chem., 2013, 5, 518 |
[20] | Manthiram A., Yu X., Wang S., Nat. Rev. Mater., 2017, 2(4), 16103 |
[21] | Bachman J. C., Muy S., Grimaud A., Chang H. H., Pour N., Lux S. F., Paschos O., Maglia F., Lupart S., Lamp P., Giordano L., Shao-Horn Y., Chem. Rev., 2016, 116(1), 140 |
[22] | Cheng X. B., Zhang R., Zhao C. Z., Wei F., Zhang J. G., Zhang Q., Adv. Sci., 2016, 3(3), 1500213 |
[23] | Fan L., Wei S., Li S., Li Q., Lu Y., Adv. Energy Mater., 2018, 8(11), 1702657 |
[24] | Xin S., Chang Z., Zhang X., Guo Y. G., Natl. Sci. Rev., 2017, 4(1), 54 |
[25] | Yu D., Li X. Y., Xu J. L., Sci. China Mater., 2019, 62(11), 1556 |
[26] | Huo H., Chen Y., Li R., Zhao N., Luo J., da Silva J. G. P., Muecke R., Kaghazchi P., Guo X., Sun X., Energy Environ. Sci., 2020, 13(1), 127 |
[27] | Zhang Q., Ding Z., Liu G., Wan H., Mwizerwa J. P., Wu J., Yao X., Energy Storage Mater., 2019, 23, 168 |
[28] | Zhang Y., Chen R., Wang S., Liu T., Xu B., Zhang X., Wang X., Shen Y., Lin Y. H., Li M., Fan L. Z., Li L., Nan C. W., Energy Storage Mater., 2020, 25, 145 |
[29] | Chen G., Bai Y., Gao Y., Wu F., Wu C., Acta Phys. Chim. Sin., 2020, 36(5), UNSP1905009 |
[30] | Xu L., Li J., Liu C., Zou G., Hou H., Ji X., Acta Phys. Chim. Sin., 2020, 36(5), UNSP1905013 |
[31] | Kamaya N., Homma K., Yamakawa Y., Hirayama M., Kanno R., Yonemura M., Kamiyama T., Kato Y., Hama S., Kawamoto K., Mitsui A., Nat. Mater., 2011, 10(9), 682 |
[32] | Umeshbabu E., Zheng B., Zhu J., Wang H., Li Y., Yang Y., ACS Appl. Mater. Interfaces, 2019, 11(20), 18436 |
[33] | Yao X., Huang N., Han F., Zhang Q., Wan H., Mwizerwa J. P., Wang C., Xu X., Adv. Energy Mater., 2017, 7(17), 1602923 |
[34] | Kato Y., Hori S., Saito T., Suzuki K., Hirayama M., Mitsui A., Yonemura M., Iba H., Kanno R., Nat. Energy, 2016, 1, 16030 |
[35] | Zhang Q., Cao D., Ma Y., Natan A., Aurora P., Zhu H., Adv. Mater., 2019, 31(44), 1901131 |
[36] | Deiseroth H. J., Kong S. T., Eckert H., Vannahme J., Reiner C., Zaiss T., Schlosser M., Angew. Chem. Int. Ed., 2008, 47(4), 755 |
[37] | Han F., Yue J., Fan X., Gao T., Luo C., Ma Z., Suo L., Wang C., Nano Lett., 2016, 16(7), 4521 |
[38] | Zhou L., Park K. H., Sun X., Lalère F., Adermann T., Hartmann P., Nazar L. F., ACS Energy Lett., 2019, 4, 265 |
[39] | Liu H., Cheng X. B., Huang J. Q., Yuan H., Lu Y., Yan C., Zhu G. L., Xu R., Zhao C. Z., Hou L. P., He C., Kaskel S., Zhang Q., ACS Energy Lett., 2020, 5, 833 |
[40] | Hatzell K. B., Chen X. C., Cobb C. L., Dasgupta N. P., Dixit M. B., Marbella L. E., McDowell M. T., Mukherjee P. P., Verma A., Viswanathan V., Westover A. S., Zeier W. G., ACS Energy Lett., 2020, 5, 922 |
[41] | Park K. H., Bai Q., Kim D. H., Oh D. Y., Zhu Y., Mo Y., Jung Y. S., Adv. Energy Mater., 2018, 8(18), 1800035 |
[42] | Sun Y. Z., Huang J. Q., Zhao C. Z., Zhang Q., Sci. China Chem., 2017, 60(12), 1508 |
[43] | Xia S., Wu X., Zhang Z., Cui Y., Liu W., Chem, 2019, 5(4), 753 |
[44] | Jung S. Y., Rajagopal R., Ryu K. S., J. Energy Chem., 2020, 47, 307 |
[45] | Jung S. K., Gwon H., Lee S. S., Kim H., Lee J. C., Chung J. G., Park S. Y., Aihara Y., Im D., J. Mater. Chem. A, 2019, 7(40), 22967 |
[46] | Fujii Y., Kobayashi M., Miura A., Rosero-Navarro N. C., Li M., Sun J., Kotobuki M., Lu L., Tadanaga K., J. Power Sources, 2020, 449, 227576 |
[47] | Zhao Y., Smith W., Wolden C. A., J. Electrochem. Soc., 2020, 167(7), 070520 |
[48] | Li X., Guan H., Ma Z., Liang M., Song D., Zhang H., Shi X., Li C., Jiao L., Zhang L., J. Energy Chem., 2020, 48, 195 |
[49] | Liu H., Cheng X. B., Huang J. Q., Kaskel S., Chou S., Park H. S., Zhang Q., ACS Mater. Lett., 2019, 1(2), 217 |
[50] | Chen S., Xie D., Liu G., Mwizerwa J. P., Zhang Q., Zhao Y., Xu X., Yao X., Energy Storage Mater., 2018, 14, 58 |
[51] | Zhang X. Q., Zhao C. Z., Huang J. Q., Zhang Q., Engineering, 2018, 4(6), 831 |
[52] | Zhu G. L., Zhao C. Z., Huang J. Q., He C., Zhang J., Chen S., Xu L., Yuan H., Zhang Q., Small, 2019, 15(15), 1805389 |
[53] | Santhosha A. L., Medenbach L., Buchheim J. R., Adelhelm P., Batteries Supercaps, 2019, 2(6), 524 |
[54] | Dai J., Yang C., Wang C., Pastel G., Hu L., Adv. Mater., 2018, 30(48), 1802068 |
[55] | Doux J. M., Han N., Tan D. H. S., Banerjee A., Wang X., Wu E. A., Jo C., Yang H., Meng Y. S., Adv. Energy Mater., 2020, 10(1), 1903253 |
[56] | Fan Z., Ding B., Zhang T., Lin Q., Malgras V., Wang J., Dou H., Zhang X., Yamauchi Y., Small, 2019, 15(46), 1903952 |
[57] | Hou L. P., Yuan H., Zhao C. Z., Xu L., Zhu G. L., Nan H. X., Cheng X. B., Liu Q. B., He C. X., Huang J. Q., Zhang Q., Energy Storage Mater., 2020, 25, 436 |
[58] | Ohno S., Koerver R., Dewald G., Rosenbach C., Titscher P., Steckermeier D., Kwade A., Janek J., Zeier W. G., Chem. Mater., 2019, 31(8), 2930 |
[59] | Xu L., Tang S., Cheng Y., Wang K., Liang J., Liu C., Cao Y. C., Wei F., Mai L., Joule, 2018, 2(10), 1991 |
[60] | Yuan H., Peng H. J., Huang J. Q., Zhang Q., Adv. Mater. Interfaces, 2019, 6(4), 1802046 |
[61] | Lee H., Oh P., Kim J., Cha H., Chae S., Lee S., Cho J., Adv. Mater., 2019, 31(29), 1900376 |
[62] | Deng S., Li X., Ren Z., Li W., Luo J., Liang J., Liang J., Banis M. N., Li M., Zhao Y., Li X., Wang C., Sun Y., Sun Q., Li R., Hu Y., Huang H., Zhang L., Lu S., Luo J., Sun X., Energy Storage Mater., 2020, 27, 117 |
[63] | Zhang Z., Zhang J., Sun Y., Jia H., Peng L., Zhang Y., Xie J., J. Energy Chem., 2020, 41, 171 |
[64] | Liang J., Li X., Zhao Y., Goncharova L. V., Li W., Adair K. R., Banis M. N., Hu Y., Sham T. K., Huang H., Zhang L., Zhao S., Lu S., Li R., Sun X., Adv. Energy Mater., 2019, 9(38), 1902125 |
[65] | Liu G., Xie D., Wang X., Yao X., Chen S., Xiao R., Li H., Xu X., Energy Storage Mater., 2019, 17, 266 |
[66] | Zhao C. Z., Zhao B. C., Yan C., Zhang X. Q., Huang J. Q., Mo Y., Xu X., Li H., Zhang Q., Energy Storage Mater., 2020, 24, 75 |
[67] | Xu J., Liu L., Yao N., Wu F., Li H., Chen L., Mater. Today Nano, 2019, 8, 100048 |
[68] | Miura A., Rosero-Navarro N. C., Sakuda A., Tadanaga K., Phuc N. H. H., Matsuda A., Machida N., Hayashi A., Tatsumisago M., Nat. Rev. Chem., 2019, 3(3), 189 |
[69] | Aguesse F., Manalastas W., Buannic L., Lopez del Amo J. M., Singh G., Llordes A., Kilner J., ACS Appl. Mater. Interfaces, 2017, 9(4), 3808 |
[70] | Wang C., Sun Q., Liu Y., Zhao Y., Li X., Lin X., Banis M. N., Li M., Li W., Adair K. R., Wang D., Liang J., Li R., Zhang L., Yang R., Lu S., Sun X., Nano Energy, 2018, 48, 35 |
[71] | Ates T., Keller M., Kulisch J., Adermann T., Passerini S., Energy Storage Mater., 2019, 17, 204 |
[72] | Yubuchi S., Uematsu M., Hotehama C., Sakuda A., Hayashi A., Tatsumisago M., J. Mater. Chem. A, 2019, 7(2), 558 |
[73] | Lim H. D., Yue X., Xing X., Petrova V., Gonzalez M., Liu H., Liu P., J. Mater. Chem. A, 2018, 6(17), 7370 |
[74] | Shin M., Gewirth A. A., Adv. Energy Mater., 2019, 9(26), 1900938 |
[75] | Cao Y., Lou S., Sun Z., Tang W., Ma Y., Zuo P., Wang J., Du C., Gao Y., Yin G., Chem. Eng. J., 2020, 382, 123406 |
[76] | Oh D. Y., Nam Y. J., Park K. H., Jung S. H., Cho S. J., Kim Y. K., Lee Y. G., Lee S. Y., Jung Y. S., Adv. Energy Mater., 2015, 5(22), 1500865 |
[77] | Gurung A., Pokharel J., Baniya A., Pathak R., Chen K., Lamsal B. S., Ghimire N., Zhang W. H., Zhou Y., Qiao Q., Sustain. Energy Fuels, 2019, 3(12), 3279 |
[78] | Wang C., Adair K. R., Liang J., Li X., Sun Y., Li X., Wang J., Sun Q., Zhao F., Lin X., Li R., Huang H., Zhang L., Yang R., Lu S., Sun X., Adv. Funct. Mater., 2019, 29(26), 1900392 |
[79] | Xu X., Hou G., Nie X., Ai Q., Liu Y., Feng J., Zhang L., Si P., Guo S., Ci L., J. Power Sources, 2018, 400, 212 |
[80] | Han F., Yue J., Zhu X., Wang C., Adv. Energy Mater., 2018, 8(18), 1703644 |
[81] | Yan C., Zhang X. Q., Huang J. Q., Liu Q., Zhang Q., Trends Chem., 2019, 1(7), 693 |
[82] | Liu H., Cheng X. B., Jin Z., Zhang R., Wang G., Chen L. Q., Liu Q. B., Huang J. Q., Zhang Q., EnergyChem, 2019, 1(1), 100003 |
[83] | Cong L., Li Y., Lu W., Jie J., Liu Y., Sun L., Xie H., J. Power Sources, 2020, 446, 227365 |
[84] | Umeshbabu E., Zheng B., Zhu J., Wang H., Li Y., Yang Y., ACS Appl. Mater. Interfaces, 2019, 11(20), 18436 |
[85] | Zheng B., Zhu J., Wang H., Feng M., Umeshbabu E., Li Y., Wu Q. H., Yang Y., ACS Appl. Mater. Interfaces, 2018, 10(30), 25473 |
[86] | Xu R., Han F., Ji X., Fan X., Tu J., Wang C., Nano Energy, 2018, 53, 958 |
[87] | Xu X., Wang S., Wang H., Hu C., Jin Y., Liu J., Yan H., J. Energy Chem., 2018, 27(2), 513 |
[88] | Li M., Liu X., Li Q., Jin Z., Wang W., Wang A., Huang Y., Yang Y., J. Energy Chem., 2020, 41, 27 |
[89] | Zhao C. Z., Duan H., Huang J. Q., Zhang J., Zhang Q., Guo Y. G., Wan L. J., Sci. China Chem., 2019, 62(10), 1286 |
[90] | Lu Y., Gu S., Hong X., Rui K., Huang X., Jin J., Chen C., Yang J., Wen Z., Energy Storage Mater., 2018, 11, 16 |
[91] | Gao Y., Wang D., Li Y. C., Yu Z., Mallouk T. E., Wang D., Angew. Chem. Int. Ed., 2018, 57(41), 13608 |
[92] | Zhang Z., Chen S., Yang J., Wang J., Yao L., Yao X., Cui P., Xu X., ACS Appl. Mater. Interfaces, 2018, 10(3), 2556 |
[93] | Liu Z., Fu W., Payzant E. A., Yu X., Wu Z., Dudney N. J., Kiggans J., Hong K., Rondinone A. J., Liang C., J. Am. Chem. Soc., 2013, 135(3), 975 |
[94] | Ito S., Nakakita M., Aihara Y., Uehara T., Machida N., J. Power Sources, 2014, 271, 342 |
[95] | Chida S., Miura A., Rosero-Navarro N. C., Higuchi M., Phuc N. H. H., Muto H., Matsuda A., Tadanaga K., Ceram. Int., 2018, 44(1), 742 |
[96] | Ziolkowska D. A., Arnold W., Druffel T., Sunkara M., Wang H., ACS Appl. Mater. Interfaces, 2019, 11(6), 6015 |
[97] | Wang Y., Lu D., Bowden M., El Khoury P. Z., Han K. S., Deng Z. D., Xiao J., Zhang J. G., Liu J., Chem. Mater., 2018, 30(3), 990 |
[98] | Nguyen Huu Huy P., Yamamoto T., Muto H., Matsuda A., Inorg. Chem. Frontiers, 2017, 4(10), 1660 |
[99] | Rangasamy E., Liu Z., Gobet M., Pilar K., Sahu G., Zhou W., Wu H., Greenbaum S., Liang C., J. Am. Chem. Soc., 2015, 137(4), 1384 |
[100] | Sedlmaier S. J., Indris S., Dietrich C., Yavuz M., Draeger C., von Seggern F., Sommer H., Janek J., Chem. Mater., 2017, 29(4), 1830 |
[101] | Oh D. Y., Ha A. R., Lee J. E., Jung S. H., Jeong G., Cho W., Kim K. S., Jung Y. S., ChemSusChem, 2020, 13(1), 146 |
[102] | Yubuchi S., Teragawa S., Aso K., Tadanaga K., Hayashi A., Tatsumisago M., J. Power Sources, 2015, 293, 941 |
[103] | Wu F., Fitzhugh W., Ye L., Ning J., Li X., Nat. Commun., 2018, 9, 4037 |
[104] | Rosero-Navarro N. C., Miura A., Tadanaga K., J. Power Sources, 2018, 396, 33 |
[105] | Wang H., Hood Z. D., Xia Y. N., Liang C. D., J. Mater. Chem. A, 2016, 4(21), 8091 |
[106] | Hood Z. D., Wang H., Pandian A. S., Peng R., Gilroy K. D., Chi M. F., Liang C. D., Xia Y. N., Adv. Energy Mater., 2018, 8(21), 1800014 |
[107] | Yao X., Liu D., Wang C., Long P., Peng G., Hu Y. S., Li H., Chen L., Xu X., Nano Lett., 2016, 16(11), 7148 |
[108] | Kim D. H., Oh D. Y., Park K. H., Choi Y. E., Nam Y. J., Lee H. A., Lee S. M., Jung Y. S., Nano Lett., 2017, 17(5), 3013 |
[109] | Yubuchi S., Uematsu M., Deguchi M., Hayashi A., Tatsumisago M., ACS Appl. Energy Mater., 2018, 1(8), 3622 |
[110] | Kim D. H., Lee H. A., Song Y. B., Park J. W., Lee S. M., Jung Y. S., J. Power Sources, 2019, 426, 143 |
[111] | Nam Y. J., Oh D. Y., Jung S. H., Jung Y. S., J. Power Sources, 2018, 375, 93 |
[112] | Sakuda A., Kuratani K., Yamamoto M., Takahashi M., Takeuchi T., Kobayashi H., J. Electrochem. Soc., 2017, 164(12), A2474 |
[113] | Nam Y. J., Cho S. J., Oh D. Y., Lim J. M., Kim S. Y., Song J. H., Lee Y. G., Lee S. Y., Jung Y. S., Nano Lett., 2015, 15(5), 3317 |
[114] | Oh D. Y., Kim D. H., Jung S. H., Han J. G., Choi N. S., Jung Y. S., J. Mater. Chem. A, 2017, 5(39), 20771 |
[115] | Kong L., Jin Q., Zhang X. T., Li B. Q., Chen J. X., Zhu W. C., Huang J. Q., Zhang Q., J. Energy Chem., 2019, 39, 17 |
[116] | Yan H., Wang H., Wang D., Li X., Gong Z., Yang Y., Nano Lett., 2019, 19(5), 3280 |
[117] | Li B. Q., Kong L., Zhao C. X., Jin Q., Chen X., Peng H. J., Qin J. L., Chen J. X., Yuan H., Zhang Q., Huang J. Q., InfoMat, 2019, 1(4), 533 |
[118] | Peng H. J., Huang J. Q., Cheng X. B., Zhang Q., Adv. Energy Mater., 2017, 7(24), 1700260 |
[119] | Yuan H., Peng H. J., Li B. Q., Xie J., Kong L., Zhao M., Chen X., Huang J. Q., Zhang Q., Adv. Energy Mater., 2019, 9, 1802768 |
[120] | Dong Y., Ben T., Chem. Res. Chinese Universities, 2019, 35(4), 654 |
[121] | Yuan H., Nan H. X., Zhao C. Z., Zhu G. L., Lu Y., Cheng X. B., Liu Q. B., He C. X., Huang J. Q., Zhang Q., Batteries Supercaps, 2020, DOI:10.1002/batt.202000051 |
[122] | Liu J., Yuan H., Tao X., Liang Y., Yang S. J., Huang J. Q., Yuan T. Q., Titirici M. M., Zhang Q., EcoMat, 2020, 2(1), e12019 |
[123] | Qi Q., Lv X., Lv W., Yang Q. H., J. Energy Chem., 2019, 39, 88 |
[124] | Yamamoto M., Terauchi Y., Sakuda A., Takahashi M., Sci. Rep., 2018, 8, 1212 |
[125] | Ma Z., Xue H. G., Guo S. P., J. Mater. Sci., 2018, 53(6), 3927 |
[126] | Yu C., Ganapathy S., van Eck E. R. H., van Eijck L., de Klerk N., Kelder E. M., Wagemaker M., J. Energy Chem., 2019, 38, 1 |
[127] | Shen X., Cheng X., Shi P., Huang J., Zhang X., Yan C., Li T., Zhang Q., J. Energy Chem., 2019, 37, 29 |
[128] | Li X., Ren Z., Banis M. N., Deng S., Zhao Y., Sun Q., Wang C., Yang X., Li W., Liang J., Li X., Sun Y., Adair K., Li R., Hu Y., Sham T. K., Huang H., Zhang L., Lu S., Luo J., Sun X., ACS Energy Lett., 2019, 4(10), 2480 |
[1] | LONG Qiong, ZHONG Yunbo, ZHENG Tianxiang, LIU Chunmei. Effect of Particle Conductivity on Fe-Si Composite Electrodeposition[J]. 高等学校化学研究, 2014, 30(5): 811-816. |
[2] | LI Ying-xiu, ZHU Lian-de, ZHU Guo-yi. A Novel Flow Injection Optical Fiber Biosensor for Hypoxanthine Based on Luminol Electrochemiluminescence[J]. 高等学校化学研究, 2003, 19(2): 240-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||