高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (3): 329-342.doi: 10.1007/s40242-020-0116-0
GUO Sijie1,2, SUN Yonggang1,2, CAO Anmin1,2
收稿日期:
2020-04-16
修回日期:
2020-05-10
出版日期:
2020-06-01
发布日期:
2020-05-30
通讯作者:
CAO Anmin
E-mail:anmin_cao@iccas.ac.cn
基金资助:
GUO Sijie1,2, SUN Yonggang1,2, CAO Anmin1,2
Received:
2020-04-16
Revised:
2020-05-10
Online:
2020-06-01
Published:
2020-05-30
Contact:
CAO Anmin
E-mail:anmin_cao@iccas.ac.cn
Supported by:
摘要: The continuous development of solid-state electrolytes(SSEs) has stimulated immense progress in the development of all-solid-state batteries(ASSBs). Particularly, garnet-typed SSEs in formula of Li7La3Zr2O12(LLZO) are under intensive investigation to exploit their advantage in high lithium ions conductivity(>1 mS/cm), wide electrochemical window(>5 V), and good chemical electrochemical stability for lithium, which are critical factors to ensure a stable, and high performance ASSBs. This review will focus on the challenges related to LLZOs-based electrolyte, and update the recent developments in structural design of LLZOs, which are discussed in three major sections:(i) crystal structure and the lithium-ion transport mechanism of LLZO; (ii) single-site and multi-site doping of Li sites, La sites and Zr sites to enhance Li ions conductivity(LIC) and stability of LLZO; (iii) interface strategies between electrodes and LLZO to decrease interface area-specific resistance(ASR).
GUO Sijie, SUN Yonggang, CAO Anmin. Garnet-type Solid-state Electrolyte Li7La3Zr2O12: Crystal Structure, Element Doping and Interface Strategies for Solid-state Lithium Batteries[J]. 高等学校化学研究, 2020, 36(3): 329-342.
GUO Sijie, SUN Yonggang, CAO Anmin. Garnet-type Solid-state Electrolyte Li7La3Zr2O12: Crystal Structure, Element Doping and Interface Strategies for Solid-state Lithium Batteries[J]. Chemical Research in Chinese Universities, 2020, 36(3): 329-342.
[1] | Tan D. H. S., Banerjee A., Chen Z., Meng Y. S., Nat. Nanotechnol., 2020, 15, 170 |
[2] | Zhao N., Khokhar W., Bi Z., Shi C., Guo X., Fan L. Z., Nan C. W., Joule, 2019, 3, 1190 |
[3] | Xiao Y., Wang Y., Bo S. H., Kim J. C., Miara L. J., Ceder G., Nature Reviews Materials, 2020, 5, 105 |
[4] | Janek J., Zeier W. G., Nature Energy, 2016, 1, 16141 |
[5] | Li T., Liu H., Shi P., Zhang Q., Rare Metals, 2018, 37, 449 |
[6] | Park K. H., Bai Q., Kim D. H., Oh D. Y., Zhu Y., Mo Y., Jung Y. S., Advanced Energy Materials, 2018, 8, 1800035 |
[7] | Luo W., Yu C., Hu L., Encyclopedia of Inorganic and Bioinorganic Chemistry, R.A. Scott (Ed.). doi:10.1002/9781119951438.eibc2666 |
[8] | Fan L., Wei S., Li S., Li Q., Lu Y., Advanced Energy Materials, 2018, 8, 1702657 |
[9] | Yu H. J., Yu Y., Yang S. B., Rare Metals, 2018, 37, 447 |
[10] | Manthiram A., Yu X., Wang S., Nature Reviews Materials, 2017, 2 |
[11] | Murugan R., Thangadurai V., Weppner W., Angew Chem. Int. Ed. Engl., 2007, 46, 7778 |
[12] | Zhang Y., Chen F., Tu R., Shen Q., Zhang L., Journal of Power Sources, 2014, 268, 960 |
[13] | Cheng L., Wu C. H., Jarry A., Chen W., Ye Y., Zhu J., Kostecki R., Persson K., Guo J., Salmeron M., Chen G., Doeff M., ACS Appl. Mater. Interfaces, 2015, 7, 17649 |
[14] | Aguesse F., Manalastas W., Buannic L., Lopez Del Amo J. M., Singh G., Llordes A., Kilner J., ACS Appl. Mater. Interfaces, 2017, 9, 3808 |
[15] | Hitz G. T., Wachsman E. D., Thangadurai V., Journal of The Electrochemical Society, 2013, 160, A1248 |
[16] | Huang M., Dumon A., Nan C. W., Electrochemistry Communications, 2012, 21, 62 |
[17] | Lu X., Yang D., Journal of Inorganic, Organometallic Polymers, Materials, 2018, 28, 2023 |
[18] | Stanje B., Rettenwander D., Breuer S., Uitz M., Berendts S., Lerch M., Uecker R., Redhammer G., Hanzu I., Wilkening M., Annalen der Physik, 2017, 529, 170140 |
[19] | Awaka J., Kijima N., Hayakawa H., Akimoto J., Journal of Solid State Chemistry, 2009, 182, 2046 |
[20] | Cao S., Song S., Xiang X., Hu Q., Zhang C., Xia Z., Xu Y., Zha W., Li J., Gonzale P. M., Han Y. H., Chen F., Journal of the Korean Ceramic Society, 2019, 56, 111 |
[21] | Zhang Y., Chen F., Tu R., Shen Q., Zhang X., Zhang L., Solid State Ionics, 2016, 284, 53 |
[22] | Wang D., Zhong G., Pang W. K., Guo Z., Li Y., McDonald M. J., Fu R., Mi J. X., Yang Y., Chemistry of Materials, 2015, 27, 6650 |
[23] | Thangadurai V., Pinzaru D., Narayanan S., Baral A. K., J. Phys. Chem. Lett., 2015, 6, 292 |
[24] | Wu J. F., Chen E. Y., Yu Y., Liu L., Wu Y., Pang W. K., Peterson V. K., Guo X., ACS Appl Mater Interfaces, 2017, 9, 1542 |
[25] | Dumon A., Huang M., Shen Y., Nan C. W., Solid State Ionics, 2013, 243, 36 |
[26] | Dai J., Yang C., Wang C., Pastel G., Hu L., Adv. Mater., 2018, 30, e1802068 |
[27] | Jin Y., McGinn P. J., Journal of Power Sources, 2011, 196, 8683 |
[28] | Kotobuki M., Kanamura K., Sato Y., Yoshida T., Journal of Power Sources, 2011, 196, 7750 |
[29] | Rangasamy E., Wolfenstine J., Sakamoto J., Solid State Ionics, 2012, 206, 28 |
[30] | Chen Y. T., Jena A., Pang W. K., Peterson V. K., Sheu H. S., Chang H., Liu R. S., The Journal of Physical Chemistry C, 2017, 121, 15565 |
[31] | El-Shinawi H., Paterson G. W., MacLaren D. A., Cussen E. J., Corr S. A., Journal of Materials Chemistry A, 2017, 5, 319 |
[32] | Padarti J. K., Jupalli T. T., Hirayama C., Senna M., Kawaguchi T., Sakamoto N., Wakiya N., Suzuki H., Journal of the Taiwan Institute of Chemical Engineers, 2018, 90, 85 |
[33] | Pan X. X., Wang J. X., Chang X. H., Li Y. D., Guan W. B., Solid State Ionics, 2018, 317, 1 |
[34] | Xue W., Yang Y., Yang Q., Liu Y., Wang L., Chen C., Cheng R., RSC Advances, 2018, 8, 13083 |
[35] | Zhao P., Cao G., Jin Z., Ming H., Wen Y., Xu Y., Zhu X., Xiang Y., Zhang S., Materials & Design, 2018, 139, 65 |
[36] | Wolfenstine J., Ratchford J., Rangasamy E., Sakamoto J., Allen J. L., Materials Chemistry, Physics, 2012, 134, 571 |
[37] | Li C., Liu Y., He J., Brinkman K. S., Journal of Alloys, Compounds, 2017, 695, 3744 |
[38] | Yang S. H., Kim M. Y., Kim D. H., Jung H. Y., Ryu H. M., Han J. H., Lee M. S., Kim H. S., Journal of Industrial, Engineering Chemistry, 2017, 56, 422 |
[39] | Qin S., Zhu X., Jiang Y., Ling M. E., Hu Z., Zhu J., Applied Physics Letters, 2018, 112, 113901 |
[40] | Qin S., Zhu X., Jiang Y., Ling M. E., Hu Z., Zhu J., Functional Materials Letters, 2018, 11, 1850029 |
[41] | Rettenwander D., Redhammer G., Preishuber-Pflugl F., Cheng L., Miara L., Wagner R., Welzl A., Suard E., Doeff M. M., Wilkening M., Fleig J., Amthauer G., Chem. Mater, 2016, 28, 2384 |
[42] | Rangasamy E., Wolfenstine J., Allen J., Sakamoto J., Journal of Power Sources, 2013, 230, 261 |
[43] | Huang M., Xu W., Shen Y., Lin Y. H., Nan C. W., Electrochimica Acta, 2014, 115, 581 |
[44] | Murugan R., Ramakumar S., Janani N., Electrochemistry Communications, 2011, 13, 1373 |
[45] | Ramakumar S., Satyanarayana L., Manorama S. V., Murugan R., Phys. Chem. Chem. Phys., 2013, 15, 11327 |
[46] | Li Y., Wang Z., Cao Y., Du F., Chen C., Cui Z., Guo X., Electrochimica Acta, 2015, 180, 37 |
[47] | Liu X., Li Y., Yang T., Cao Z., He W., Gao Y., Liu J., Li G., Li Z., Journal of the American Ceramic Society, 2017, 100, 1527 |
[48] | Shao C., Yu Z., Liu H., Zheng Z., Sun N., Diao C., Electrochimica Acta, 2017, 225, 345 |
[49] | Jiang Y., Zhu X., Qin S., Ling M. E., Zhu J., Solid State Ionics, 2017, 300, 73 |
[50] | Song S., Chen B., Ruan Y., Sun J., Yu L., Wang Y., Thokchom J., Electrochimica Acta, 2018, 270, 501 |
[51] | Song S., Yan B., Zheng F., Duong H. M., Lu L., Solid State Ionics, 2014, 268, 135 |
[52] | Ohta S., Kobayashi T., Asaoka T., Journal of Power Sources, 2011, 196, 3342 |
[53] | Tang Y., Luo Z., Liu T., Liu P., Li Z., Lu A., Ceramics International, 2017, 43, 11879 |
[54] | Kataoka K., Nagata H., Akimoto J., Sci. Rep., 2018, 8, 9965 |
[55] | Deviannapoorani C., Dhivya L., Ramakumar S., Murugan R., Journal of Power Sources, 2013, 240, 18 |
[56] | Buschmann H., Berendts S., Mogwitz B., Janek J., Journal of Power Sources, 2012, 206, 236 |
[57] | Allen J. L., Wolfenstine J., Rangasamy E., Sakamoto J., Journal of Power Sources, 2012, 206, 315 |
[58] | Hayamizu K., Matsuda Y., Matsui M., Imanishi N., Solid State Nucl. Magn. Reson., 2015, 70, 21 |
[59] | Janani N., Ramakumar S., Kannan S., Murugan R., Dunn B., Journal of the American Ceramic Society, 2015, 98, 2039 |
[60] | Sun J., Zhao N., Li Y., Guo X., Feng X., Liu X., Liu Z., Cui G., Zheng H., Gu L., Li H., Sci. Rep., 2017, 7, 41217 |
[61] | Tsai C. L., Roddatis V., Chandran C. V., Ma Q., Uhlenbruck S., Bram M., Heitjans P., Guillon O., ACS Appl. Mater. Interfaces, 2016, 8, 10617 |
[62] | Jonson R. A., McGinn P. J., Solid State Ionics, 2018, 323, 49 |
[63] | Kumazaki S., Iriyama Y., Kim K. H., Murugan R., Tanabe K., Yamamoto K., Hirayama T., Ogumi Z., Electrochemistry Communications, 2011, 13, 509 |
[64] | Ren Y., Deng H., Chen R., Shen Y., Lin Y., Nan C. W., Journal of the European Ceramic Society, 2015, 35, 561 |
[65] | Shin D. O., Oh K., Kim K. M., Park K. Y., Lee B., Lee Y. G., Kang K., Sci. Rep., 2015, 5, 18053 |
[66] | Luo W., Gong Y., Zhu Y., Fu K. K., Dai J., Lacey S. D., Wang C., Liu B., Han X., Mo Y., Wachsman E. D., Hu L., J. Am. Chem. Soc., 2016, 138, 12258 |
[67] | Buannic L., Orayech B., López Del Amo J. M., Carrasco J., Katcho N. A., Aguesse F., Manalastas W., Zhang W., Kilner J., Llordés A., Chemistry of Materials, 2017, 29, 1769 |
[68] | El-Shinawi H., Cussen E. J., Corr S. A., Dalton Trans., 2017, 46, 9415 |
[69] | Wu J. F., Pang W. K., Peterson V. K., Wei L., Guo X., ACS Appl Mater Interfaces, 2017, 9, 12461 |
[70] | Chen X., Cao T., Xue M., Lv H., Li B., Zhang C., Solid State Ionics, 2018, 314, 92 |
[71] | Chen X., Wang T., Lu W., Cao T., Xue M., Li B., Zhang C., Journal of Alloys, Compounds, 2018, 744, 386 |
[72] | Hofstetter K., Samson A. J., Thangadurai V., Solid State Ionics, 2018, 318, 71 |
[73] | Yang T., Li Y., Wu W., Cao Z., He W., Gao Y., Liu J., Li G., Ceramics International, 2018, 44, 1538 |
[74] | Yang X., Kong D., Chen Z., Sun Y., Liu Y., Journal of Materials Science:Materials in Electronics, 2017, 29, 1523 |
[75] | Geiger C. A., Alekseev E., Lazic B., Fisch M., Armbruster T., Langner R., Fechtelkord M., Kim N., Pettke T., Weppner W., Inorg. Chem., 2011, 50, 1089 |
[76] | Düvel A., Kuhn A., Robben L., Wilkening M., Heitjans P., The Journal of Physical Chemistry C, 2012, 116, 15192 |
[77] | Jalem R., Rushton M. J. D., Manalastas W., Nakayama M., Kasuga T., Kilner J. A., Grimes R. W., Chemistry of Materials, 2015, 27, 2821 |
[78] | Hu S., Li Y. F., Yang R., Yang Z., Wang L., Ceramics International, 2018, 44, 6614 |
[79] | Rettenwander D., Geiger C. A., Amthauer G., Inorg Chem, 2013, 52, 8005 |
[80] | Rettenwander D., Geiger C. A., Tribus M., Tropper P., Wagner R., Tippelt G., Lottermoser W., Amthauer G., J. Solid. State Chem., 2015, 230, 266 |
[81] | Rettenwander D., Wagner R., Reyer A., Bonta M., Cheng L., Doeff M. M., Limbeck A., Wilkening M., Amthauer G., J. Phys. Chem. C Nanomater Interfaces, 2018, 122, 3780 |
[82] | Wolfenstine J., Sakamoto J., Allen J. L., Journal of Materials Science, 2012, 47, 4428 |
[83] | Wang M., Sakamoto J., Journal of Power Sources, 2018, 377, 7 |
[84] | Rawlence M., Filippin A. N., Wackerlin A., Lin T. Y., Cuervo-Reyes E., Remhof A., Battaglia C., Rupp J. L. M., Buecheler S., ACS Appl. Mater. Interfaces, 2018, 10, 13720 |
[85] | Thangadurai V., Narayanan S., Pinzaru D., Chem. Soc. Rev., 2014, 43, 4714 |
[86] | Yan B., Kotobuki M., Liu J., Materials Technology, 2016, 31, 623 |
[87] | Zhang Y., Chen F., Li J., Zhang L., Gu J., Zhang D., Saito K., Guo Q., Luo P., Dong S., Electrochimica Acta, 2018, 261, 137 |
[88] | Ren Y., Liu T., Shen Y., Lin Y., Nan C. W., Ionics, 2017, 23, 2521 |
[89] | Yu S., Schmidt R. D., Garcia-Mendez R., Herbert E., Dudney N. J., Wolfenstine J. B., Sakamoto J., Siegel D. J., Chemistry of Materials, 2015, 28, 197 |
[90] | Meesala Y., Liao Y. K., Jena A., Yang N. H., Pang W. K., Hu S. F., Chang H., Liu C. E., Liao S. C., Chen J. M., Guo X., Liu R. S., Journal of Materials Chemistry A, 2019, 7, 8589 |
[91] | Huo H., Chen Y., Li R., Zhao N., Luo J., Pereira da Silva J. G., Mücke R., Kaghazchi P., Guo X., Sun X., Energy & Environmental Science, 2020, 13, 127 |
[92] | Alexander G. V., Rosero-Navarro N. C., Miura A., Tadanaga K., Murugan R., Journal of Materials Chemistry A, 2018, 6, 21018 |
[93] | Han X., Gong Y., Fu K. K., He X., Hitz G. T., Dai J., Pearse A., Liu B., Wang H., Rubloff G., Mo Y., Thangadurai V., Wachsman E. D., Hu L., Nat Mater, 2017, 16, 572 |
[94] | Yang C., Xie H., Ping W., Fu K., Liu B., Rao J., Dai J., Wang C., Pastel G., Hu L., Adv Mater, 2019, 31, e1804815 |
[95] | Duan J., Wu W., Nolan A. M., Wang T., Wen J., Hu C., Mo Y., Luo W., Huang Y., Adv Mater, 2019, 31, e1807243 |
[96] | Fu K., Gong Y., Liu B., Zhu Y., Xu S., Yao Y., Luo W., Wang C., Lacey S. D., Dai J., Chen Y., Mo Y., Wachsman E., Hu L., Sci. Adv., 2017, 3, e1601659 |
[97] | Luo W., Gong Y., Zhu Y., Li Y., Yao Y., Zhang Y., Fu K. K., Pastel G., Lin C. F., Mo Y., Wachsman E. D., Hu L., Adv. Mater, 2017, 29, 1606042 |
[98] | He M., Cui Z., Chen C., Li Y., Guo X., Journal of Materials Chemistry A, 2018, 6, 11463 |
[99] | Zhao N., Fang R., He M. H., Chen C., Li Y. Q., Bi Z. J., Guo X. X., Rare Metals, 2018, 37, 473 |
[100] | Wang C., Gong Y., Liu B., Fu K., Yao Y., Hitz E., Li Y., Dai J., Xu S., Luo W., Wachsman E. D., Hu L., Nano Lett., 2017, 17, 565 |
[101] | Zhou C., Samson A. J., Hofstetter K., Thangadurai V., Sustainable Energy & Fuels, 2018, 2, 2165 |
[102] | Shao Y., Wang H., Gong Z., Wang D., Zheng B., Zhu J., Lu Y., Hu Y. S., Guo X., Li H., Huang X., Yang Y., Nan C. W., Chen L., ACS Energy Letters, 2018, 3, 1212 |
[103] | Xu H., Li Y., Zhou A., Wu N., Xin S., Li Z., Goodenough J. B., Nano Lett., 2018, 18, 7414 |
[104] | Chen Y., He M., Zhao N., Fu J., Huo H., Zhang T., Li Y., Xu F., Guo X., Journal of Power Sources, 2019, 420, 15 |
[105] | Park K., Yu B. C., Jung J. W., Li Y., Zhou W., Gao H., Son S., Goodenough J. B., Chemistry of Materials, 2016, 28, 8051 |
[106] | Xiao Y., Miara L. J., Wang Y., Ceder G., Joule, 2019, 3, 1252 |
[107] | van den Broek J., Afyon S., Rupp J. L. M., Advanced Energy Materials, 2016, 6 |
[108] | Huang X., Liu C., Lu Y., Xiu T., Jin J., Badding M. E., Wen Z., Journal of Power Sources, 2018, 382, 190 |
[109] | Fu K. K., Gong Y., Xu S., Zhu Y., Li Y., Dai J., Wang C., Liu B., Pastel G., Xie H., Yao Y., Mo Y., Wachsman E., Hu L., Chemistry of Materials, 2017, 29, 8037 |
[110] | Lu Y., Huang X., Song Z., Rui K., Wang Q., Gu S., Yang J., Xiu T., Badding M. E., Wen Z., Energy Storage Materials, 2018, 15, 282 |
[1] | ZHENG Xuelian, LIU Ling, YANG Cuicui, HE Yuanyuan, CHEN Jiu, TIAN Wei Quan. Modulation of the Second Order Nonlinear Optical Properties of Helical Graphene Nanoribbons Through Introducing Azulene Defects or/and BN Units[J]. 高等学校化学研究, 2022, 38(4): 974-984. |
[2] | YANG Zhichen, KANG Xiaoting, ZOU Bo, YUAN Xuna, LI Yajie, WU Qin, GUO Yupeng. Development of the Self-doping Porous Carbon and Its Application in Supercapacitor Electrode[J]. 高等学校化学研究, 2022, 38(4): 1065-1072. |
[3] | HAO Zhimin, LIU Dapeng, GE Huaiyun, ZUO Xintao, FENG Xilan, SHAO Mingzhe, YU Haohan, YUAN Guobao, and ZHANG Yu. Preparation of Quaternary FeCoMoCu Metal Oxides for Oxygen Evolution Reaction[J]. 高等学校化学研究, 2022, 38(3): 823-828. |
[4] | YI Jundong, LI Qiuxia, CHI Shaoyi, HUANG Yuanbiao, CAO Rong. Boron-doped Covalent Triazine Framework for Efficient CO2 Electroreduction[J]. 高等学校化学研究, 2022, 38(1): 141-146. |
[5] | MAN Yixiao, ZHAO Jinyu, LIU Shipeng, PAN Qingyan, ZHAO Yingjie. Heteroatom Doped Graphdiyne and Analogues: Synthesis, Structures and Applications[J]. 高等学校化学研究, 2021, 37(6): 1213-1223. |
[6] | LI Ru, ZHANG Mingjia, LI Xiaodong, MA Xiaodi, HUANG Changshui. Study of Graphdiyne-based Magnetic Materials[J]. 高等学校化学研究, 2021, 37(6): 1257-1267. |
[7] | JIANG Xingyu, WANG Qi, WANG Zi, DONG Bin, HUANG Lizhen, CHI Lifeng. Recent Progresses on the High Performance Organic Electrochemical Transistors[J]. 高等学校化学研究, 2021, 37(5): 975-988. |
[8] | WANG Ruifang, YU Xi, LI Zhenyu, CHEN Jingyu, JIANG Tingting. Partial P-Type Metal Ions Doping Induced Variation of Both Crystal Structure and Oxygen Vacancy Within Cu/SnO2 Metastable Solid Solution Nanofibers for Highly Sensitive C2H2 Sensor[J]. 高等学校化学研究, 2021, 37(3): 584-588. |
[9] | MENG Zeshuo, ZHOU Bo, XU Jian, LI Yaxin, HU Xiaoying, TIAN Hongwei. Heterostructured Nitrogen and Sulfur co-Doped Black TiO2/g-C3N4 Photocatalyst with Enhanced Photocatalytic Activity[J]. 高等学校化学研究, 2020, 36(6): 1045-1052. |
[10] | WANG Kuangyu, WU Yulong, LIU Kai, WU Hui. A Review on Anode Side Interface Stability Micromechanisms and Engineering for Garnet Electrolyte-based Solid-state Batteries[J]. 高等学校化学研究, 2020, 36(3): 351-359. |
[11] | ZANG Rui, LI Peng, WANG Guoxiu. Bimetallic Sulfide/Sulfur Doped T3C2Tx MXene Nanocomposites as High-performance Anode Materials for Sodium-ion Batteries[J]. 高等学校化学研究, 2020, 36(3): 431-438. |
[12] | REN Xiangyang, XIA Sha, ZHANG Zhiguo, MENG Xing, YU Hongmei, WU Qi, ZHANG Wenyi, LI Aiwu, YANG Han. Opening of Band Gap of Graphene with High Electronic Mobility by Codoping BN Pairs[J]. 高等学校化学研究, 2019, 35(6): 1058-1061. |
[13] | FU Xiuyan, XU Shuai, LUO Yang, LI Aiwu, YANG Han. Simultaneous Photoreduction and Nitrogen Doping of Graphene Oxide for Supercapacitors by Direct Laser Writing[J]. 高等学校化学研究, 2019, 35(5): 879-883. |
[14] | LIN Shijing, DU Wutong, TONG Laga, JI Tao, JIAO Xinxin. Photocatalytic Degradation of 4-Chlorophenol by Gd-Doped β-Bi2O3 Under Visible Light Irradiation[J]. 高等学校化学研究, 2019, 35(1): 120-124. |
[15] | SUN Wentian, SI Yunheng, JING Haitao, DONG Zhaojun, WANG Chunxu, ZHANG Yupeng, ZHAO Lichen, FENG Wei, YAN Yan. Visible-light Photochromism of Phosphomolybdic Acid/ZnO Composite[J]. 高等学校化学研究, 2018, 34(3): 464-469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||