[1] Yang Z., Zhang J., Kintner-Meyer M. C., Lu X., Choi D., Lemmon J. P., Liu J., Chem. Rev., 2011, 111, 3577. [2] Dunn B., Kamath H., Tarascon J.-M., Science, 2011, 334, 928. [3] Luo Z., Li X., Wang X., Deng S., He L., Lin K., Li Q., Xing X., Kuang X., Chem. Mater., 2024, 36, 2835. [4] Li X., Kuang X., Sun J., Inorg. Chem. Front., 2021, 8, 1374. [5] Wang Y., Richards W. D., Ong S. P., Miara L. J., Kim J. C., Mo Y., Ceder G., Nat. Mater., 2015, 14, 1026. [6] Deng Y., Eames C., Chotard J.-N., Lalère F., Seznec V., Emge S., Pecher O., Grey C. P., Masquelier C., Islam M. S., J. Am. Chem. Soc., 2015, 137, 9136. [7] Ma C., Chen K., Liang C., Nan C.-W., Ishikawa R., More K., Chi M., Energy Environ. Sci., 2014, 7, 1638. [8] Li M., Lu J., Chen Z., Amine K., Adv. Mater., 2018, 30, 1800561. [9] Etacheri V., Marom R., Elazari R., Salitra G., Aurbach D., Energy Environ. Sci., 2011, 4, 3243. [10] Manthiram A., J. Phys. Chem. Lett., 2011, 2, 176. [11] Zhang F., He B., Xin Y., Zhu T., Zhang Y., Wang S., Li W., Yang Y., Tian H., Chem. Rev., 2024, 124, 4778. [12] Slater M. D., Kim D., Lee E., Johnson C. S., Adv. Funct. Mater., 2013, 23, 947. [13] Palomares V., Casas-Cabanas M., Castillo-Martínez E., Han M. H., Rojo T., Energy Environ. Sci., 2013, 6, 2312. [14] Goodenough J. B., Singh P., J. Electrochem. Soc., 2015, 162, A2387. [15] Kim S. W., Seo D. H., Ma X., Ceder G., Kang K., Adv. Energy Mater., 2012, 2, 710. [16] Liang Y., Dong H., Aurbach D., Yao Y., Nat. Energy, 2020, 5, 646. [17] Hayashi A., Noi K., Sakuda A., Tatsumisago M., Nat. Commun., 2012, 3, 856. [18] Wang H., Chen Y., Hood Z. D., Sahu G., Pandian A. S., Keum J. K., An K., Liang C., Angew. Chem. Int. Ed., 2016, 128, 8693. [19] Zhang Z., Ramos E., Lalère F., Assoud A., Kaup K., Hartman P., Nazar L. F., Energy Environ. Sci., 2018, 11, 87. [20] Zhang L., Yang K., Mi J., Lu L., Zhao L., Wang L., Li Y., Zeng H., Adv. Energy Mater., 2015, 5, 39. [21] Lee D.-H., Lee S.-T., Kim J.-S., Lim S.-K., Mater. Res. Bull., 2017, 96, 143. [22] Wang C., Fu K., Kammampata S. P., McOwen D. W., Samson A. J., Zhang L., Hitz G. T., Nolan A. M., Wachsman E. D., Mo Y., Chem. Rev., 2020, 120, 4257. [23] Anantharamulu N., Koteswara Rao K., Rambabu G., Vijaya Kumar B., Radha V., Vithal M., J. Mater. Sci., 2011, 46, 2821. [24] Lu X., Xia G., Lemmon J. P., Yang Z., JPS, 2010, 195, 2431. [25] Ma Q., Guin M., Naqash S., Tsai C.-L., Tietz F., Guillon O., Chem. Mater., 2016, 28, 4821. [26] Hong H.-P., Mater. Res. Bull., 1976, 11, 173. [27] Lu Z., Liu J., Ciucci F., ESM, 2020, 28, 146. [28] Huang H., Wu H.-H., Chi C., Zhu J., Huang B., Zhang T.-Y., Nanoscale, 2019, 11, 18758. [29] Mizushima K., Jones P., Wiseman P., Goodenough J. B., Mater. Res. Bull., 1980, 15, 783. [30] Zhao S., Luo J., Zhou P., Zhang S. Q., Sun Z., Hong M., J. RSC Adv., 2013, 3, 14000. [31] Evstigneeva M. A., Nalbandyan V. B., Petrenko A. A., Medvedev B. S., Kataev A. A., Chem. Mater., 2011, 23, 1174. [32] Berthelot R., Schmidt W., Sleight A., Subramanian M., J. Solid State Chem., 2012, 196, 225. [33] Chen H., Wong L. L., Adams S., Acta Cryst., 2019, 75, 18. [34] Wong L. L., Phuah K. C., Dai R., Chen H., Chew W. S., Adams S., Chem. Mater., 2021, 33, 625. [35] Chen H., Adams S., IUCrJ, 2017, 4, 614. [36] Tanibata N., Takimoto S., Nakano K., Takeda H., Nakayama M., Sumi H., ACS Mater. Lett., 2020, 2, 880. [37] Tanibata N., Kondo Y., Yamada S., Maeda M., Takeda H., Nakayama M., Asaka T., Kitajou A., Okada S., Sci. Rep., 2018, 8, 17199. [38] Chen J., Kang L., Lu H., Luo P., Wang F., He L., Physica B, 2018, 551, 370. [39] Coelho A., TOPAS: General Profile and Structure Analysis Software for Powder Diffraction Data, Bruker AXS GmbH, Karlsruhe, Germany, 2003. [40] Pilolli R., Ditaranto N., Cioffi N., Sabbatini L., Anal. Bioanal. Chem., 2013, 405, 713. [41] Massiot D., Fayon F., Capron M., King I., Le Calvé S., Alonso B., Durand J. O., Bujoli B., Gan Z., Hoatson G., Magn. Reson. Chem., 2002, 40, 70. [42] Johnson D., Zview for Windows, Impedance/Gain Phase Graphing and Analysis Software, Scribner Associates, North Carolina, 2001. [43] Gale J. D., Rohl A. L., Mol. Simul., 2003, 29, 291. [44] Catlow C. R. A., J. Chem. Soc., 1989, 85, 335. [45] Bush T. S., Gale J. D., Catlow C. R. A., J. Mater. Chem., 1994, 4, 831. [46] Binks D. J., Computational Modelling of Zinc Oxide and Related Oxide Ceramics, University of Surrey Guildford, United Kingdom, 1994. [47] Sangster M., Atwood R., Journal of Physics C: Solid State Physics, 1978, 11, 1541. [48] Humphrey W., Dalke A., Schulten K., J. Mol. Graphics., 1996, 14, 33. [49] Róg T., Murzyn K., Hinsen K., Kneller G. R., J. Comput. Chem., 2003, 24, 657. [50] Evstigneeva M. A., Nalbandyan V. B., Petrenko A. A., Medvedev B. S., Kataev A. A., Chem. Mater., 2011, 23, 1174. |