高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (4): 560-583.doi: 10.1007/s40242-020-0187-y
PAN Lu1,2, DONG Jinyang3, YI Ding1, YANG Yijun1, WANG Xi1,2
收稿日期:
2020-06-15
修回日期:
2020-06-30
出版日期:
2020-08-01
发布日期:
2020-07-30
通讯作者:
WANG Xi
E-mail:xiwang@bjtu.edu.cn.
基金资助:
PAN Lu1,2, DONG Jinyang3, YI Ding1, YANG Yijun1, WANG Xi1,2
Received:
2020-06-15
Revised:
2020-06-30
Online:
2020-08-01
Published:
2020-07-30
Contact:
WANG Xi
E-mail:xiwang@bjtu.edu.cn.
Supported by:
摘要: Developing new types of rechargeable batteries with high energy densities and low cost have received increasing attentions, aiming to reduce the dependence on high-priced lithium. Beyond Li-ion batteries, the potential alternatives including Na-ion batteries, Li-S batteries and Li-air batteries have been investigated recently, which are required to be viable for commercial applications. From this point of view, to understand the electrochemical reaction mechanisms and kinetics of these batteries has become the key challenge to make breakthroughs in the field of new energy storage. In this review, we present a critical overview of the two dimensional nanomaterials-based batteries (except Li-ion-based batteries) that could meet such demonds. To develop new energy storage devices with more promising performances, the microstructure evolution and atomic scale storage mechanism of these batteries are comprehensively summarized. In addition, the major challenges and opportunities of advanced characterization techniques are finally discussed. We do hope that this review will give the readers a clear and profound understanding of the electrochemical reaction mechanisms and kinetics of the as-discussed batteries, thus effectively contributing to the smart design of future-generation energy storage devices.
PAN Lu, DONG Jinyang, YI Ding, YANG Yijun, WANG Xi. Recent Advances in Atomic-scale Storage Mechanism Studies of Two-dimensional Nanomaterials for Rechargeable Batteries Beyond Li-ion[J]. 高等学校化学研究, 2020, 36(4): 560-583.
PAN Lu, DONG Jinyang, YI Ding, YANG Yijun, WANG Xi. Recent Advances in Atomic-scale Storage Mechanism Studies of Two-dimensional Nanomaterials for Rechargeable Batteries Beyond Li-ion[J]. Chemical Research in Chinese Universities, 2020, 36(4): 560-583.
[1] | Chu S., Cui Y., Liu N., Nat. Mater., 2017, 16, 16 |
[2] | Lu J., Chen Z. H., Ma Z. F., Pan F., Curtiss L. A., Amine K., Nat. Nanotechnol., 2016, 11, 1031 |
[3] | Larcher D. J., Tarascon M., Nat. Chem., 2015, 7, 19 |
[4] | Bruce P. G., Scrosati B., Tarascon J. M., Angew. Chem. Int. Ed., 2008, 47, 2930 |
[5] | McCalla E., Abakumov A. M., Saubanere M., Foix D., Berg E. J., Rousse G., Doublet M. L., Gonbeau D., Novak P., van Tendeloo G., Dominko R., Tarascon J. M., Science, 2015, 350, 1516 |
[6] | Wang C. Y., Zhang G. S., Ge S. H., Xu T., Ji Y., Yang X. G., Leng Y. J., Nature, 2016, 529, 515 |
[7] | Sun Y. M., Liu N. A., Cui Y., Nat. Energy, 2016, 1, 12 |
[8] | Singh N., Arthur T. S., Ling C., Matsui M., Mizuno F., Chem. Commun., 2013, 49, 149 |
[9] | Kim S. W., Seo D. H., Ma X., Ceder G., Kang K., Adv. Energy Mater., 2012, 2, 710 |
[10] | Bruce P. G., Freunberger S. A., Hardwick L. J., Tarascon J. M., Nat. Mater., 2012, 11, 19 |
[11] | Rodriguez-Perez I. A., Yuan Y. F., Bommier C., Wang X. F., Ma L., Leonard D. P., Lerner M. M., Carter R. G., Wu T. P., Greaney P. A., Lu J., Ji X. L., J. Am. Chem. Soc., 2017, 139, 13031 |
[12] | Kalluri S., Yoon M., Jo M., Liu H. K., Dou S. X., Cho J., Guo Z., Adv. Mater., 2017, 29(48), 1605807 |
[13] | Larcher D., J. Tarascon M., Nat. Chem., 2015, 7, 19 |
[14] | Zu C. X., Li H., Energy Environ. Sci., 2011, 4, 2614 |
[15] | Wang X., Weng Q., Yang Y., Bando Y., Golberg D., Chem. Soc. Rev., 2016, 45, 4042 |
[16] | Jin Y., Li S., Kushima A., Zheng X. Q., Sun Y. M., Xie J., Sun J., Xue W. J., Zhou G. M., Wu J., Shi F. F., Zhang R. F., Zhu Z., So K. P., Cui Y., Li J., Energy Environ. Sci., 2017, 10, 580 |
[17] | Li Y., Li Y., Sun Y., Butz B., Yan K., Koh A. L., Zhao J., Pei A., Cui Y., Nano Lett., 2017, 17, 5171 |
[18] | Wang P. F., Yao H. R., Liu X. Y., Zhang J. N., Gu L., Yu X. Q., Yin Y. X., Guo Y. G., Adv. Mater., 2017, 29, 1700210 |
[19] | Wang X., Weng Q., Liu X., Wang X., Tang D. M., Tian W., Zhang C., Yi W., Liu D., Bando Y., Golberg D., Nano Lett., 2014, 14, 1164 |
[20] | Liu X. H., Huang J. Y., Energy Environ. Sci., 2011, 4, 3844 |
[21] | Gu Q., J. Kimpton A., Brand H. E. A., Wang Z., Chou S., Adv. Energy Mater., 2017, 7(24), 1602831 |
[22] | Yang Y., Liu X., Dai Z., Yuan F., Bando Y., Golberg D., Wang X., Adv. Mater., 2017, 29, 1606922 |
[23] | Geim A. K., Science, 2009, 324, 1530 |
[24] | Georgiou T., Jalil R., Belle B. D., Britnell L., Gorbachev R. V., Morozov S. V., Nat. Nanotechnol., 2013, 8, 100 |
[25] | Lopez-Sanchez O., Lembke D., Kayci M., Radenovic A., Kis A., Nat. Nanotechnol., 2013, 8, 497 |
[26] | Santanu M., Gurpreet S., ACS Appl. Energy Mater., 2019, 2, 932 |
[27] | Ying W., Yan Y., Energy Storage Materials, 2019 16, 323 |
[28] | Tiwari J. N., Tiwari R. N., Kim K. S., Prog. Mater. Sci., 2012, 57, 724 |
[29] | Chen M., Li P., Liang C., Gu H., Tong W., Cheng S., Li W., Zhao G., Shao G., J. Energy Chem., 2020, 45, 103 |
[30] | Ou W., Pan J., Liu Y., J. Energy Chem., 2020, 43, 188 |
[31] | Li N., Xie Y., Peng S., Xiong X., Han K., J. Energy Chem., 2020, 42, 116 |
[32] | Velicky M., Toth P. S., Appl. Mater. Today, 2017, 8, 68 |
[33] | Yang Y., Liu X., Zhu Z., Joule, 2018, 2, 1075 |
[34] | Pan L., Zhang Y., Lu F., Energ. Stor. Mater., 2019, 19, 39 |
[35] | Peters J., Buchholz D., Passerini S., Weil M., Energy Environ. Sci., 2016, 9, 1744 |
[36] | Vaalma C., Buchholz D., Weil M., Passerini S., Nat. Mater. Rev., 2018, 3, 18013 |
[37] | Hameer S., Niekerk J. L., Inter. J. Energy Res., 2015, 39, 1179 |
[38] | Larcher D., Tarascon J. M., Nat. Chem., 2015, 7, 19 |
[39] | Grey C., Tarascon J., Nat. Mater., 2017, 16, 45 |
[40] | Zhao J., Zhao L. W., Dimov N., Okada S., Nishida T., J. Electrochem. Soc., 2013, 160, A3077 |
[41] | Rajagopalan R., Chen B., Zhang Z., Wu X. L., Du Y., Huang Y., Li B., Zong Y., Wang J., Nam G. H., Sindoro M., Dou S. X., Liu H. K., Zhang H., Adv. Mater., 2017, 29, 1605694 |
[42] | Watanabe E., Zhao W., Sugahara A., Mortemard de Boisse B., Lander L., Asakura D., Okamoto Y., Mizokawa T., Okubo M., Yamada A., Chem. Mater., 2019, 31, 2358 |
[43] | Kim S., Ma X. H., Ong S. P., Ceder G., Phys. Chem. Chem. Phys., 2012, 14, 15571 |
[44] | Pumera M., Sofer Z., Ambrosi A., J. Mater. Chem. A, 2014, 2, 8981 |
[45] | Aksenov V. L., Koval'chuk M. V., Kuz'min A. Y., Purans Y., Tyutyunnikov S. I., Crystallography Reports, 2006, 51, 971 |
[46] | Chen M., Hua W., Xiao J., Cortie D., Chen W., Wang E., Hu Z., Gu Q., Wang X., Indris S., Chou S., Dou S., Nat. Commun., 2019, 10, 1480 |
[47] | Zhu Y., Xiao Y., Hua W., Indris S., Dou S., Guo Y., Chou S., Angew. Chem., 2020, 132, 1 |
[48] | Yuan Y. F., Amine K., Lu J., Shahbazian-Yassar R., Nat. Commun., 2017, 8, 14 |
[49] | Fang C., Huang Y., Zhang W., Han J., Deng Z., Cao Y., Yang H., Adv. Energy Mater., 2016, 6, 1501727 |
[50] | Liu C., Neale Z. G., Cao G., Materials Today, 2016, 19, 109 |
[51] | Wu K., Chen F., Ma Z., Guo B., Lyu Y., Wang P., Yang H., Li Q., Wang H., Nie A., Chem. Commun., 2019, 55(39), 5611 |
[52] | Yan P. , Zheng J., Tang Z., Devaraj A. , Chen G., Amine K., Zhang J., Liu L., Wang C., Nat. nanotech., 2019, 14, 602 |
[53] | Ren W. N., Zhang H. F., Guan C., Cheng C. W., Adv. Funct. Mater., 2017, 27, 10 |
[54] | Kim H., Kim H., Ding Z., Lee M. H., Lim K., Yoon G., Kang K., Adv. Energy Mater., 2016, 6, 1600943 |
[55] | Xiao Y., Lee S. H., Sun Y. K., Adv. Energy Mater., 2017, 7, 1601329 |
[56] | Hwang J. Y., Myung S. T., Sun Y. K., Chem. Soc. Rev., 2017, 46, 3529 |
[57] | Zhao Y., Wang L. P., Sougrati M. T., Feng Z., Leconte Y., Fisher A., Srinivasan M., Xu Z., Adv. Energy Mater., 2017, 7, 1601424 |
[58] | Doeff M. M., Ma Y., Visco S. J., de Jonghe L. C., J. Electrochem. Soc., 1993, 140, L169 |
[59] | Stevens D. A., Dahn J. R., J. Electro. Soc., 2000, 147(4), 1271 |
[60] | Kang H., Liu Y., Cao K., Zhao Y., Jiao L., Wang Y., Yuan H., J. Mater. Chem. A, 2015, 3, 17899 |
[61] | Cao Y., Xiao L., Sushko M. L., Wang W., Schwenzer B., Xiao J., Nie Z., Saraf L. V., Yang Z., Liu J., Nano Lett., 2012, 12, 3783 |
[62] | Xiao L., Lu H., Fang Y., Sushko M. L., Cao Y., Ai X., Yang H., Liu J., Adv. Energy Mater., 2018, 1703238 |
[63] | Li Y., Yuan Y., Bai Y., Liu Y., Wang Z., Li L., Wu F., Amine K., Wu C., Lu J., Adv. Energy Mater., 2018, 1702781 |
[64] | Bommier C., Surta T. W., Dolgos M., Ji X., Nano Lett., 2015, 15, 5888 |
[65] | Xu D. F., Chen C. J., Xie J., Zhang B., Miao L., Cai J., Huang Y. H., Zhang L. N., Adv. Energy Mater., 2016, 6(6), 1501929 |
[66] | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666 |
[67] | Etacheri V., Marom R., Elazari R., Salitra G., Aurbach D., Energy Environ. Sci., 2011, 4, 3243 |
[68] | Dahbi M., Yabuuchi N., Kubota K., Tokiwa K., Komaba S., Phys. Chem. Chem. Phys., 2014, 16, 15007 |
[69] | Yang Y., Tang D. M., Zhang C., Zhang Y., Liang Q., Chen S., Weng Q., Zhou M., Xue Y., Liu J., Wu J., Cui Q. H., Lian C., Hou G., Yuan F., Bando Y., Golberg D., Wang X., Energy Environ. Sci., 2017, 10, 979 |
[70] | Jache B., Adelhelm P., Angew. Chem. Int. Ed., 2014, 53, 10169 |
[71] | Gotoh K., Maruyama H., Miyatou T., Mizuno M., Urita K., Ishida H., J. Phys. Chem. C, 2016, 120, 28152 |
[72] | Kumar N. A., Gaddam R. R., Varanasi S. R., Yang D., Bhatia S. K., Zhao X. S., Electrochim. Acta, 2016, 214, 319 |
[73] | Wang Y. X., Chou S. L., Liu H. K., Dou S. X., Carbon, 2013, 57, 202 |
[74] | Zhang C., Wang X., Liang Q., Liu X., Weng Q., Liu J., Yang Y., Dai Z., Ding K., Bando Y., Tang J., Golberg D., Nano Lett., 2016, 16, 2054 |
[75] | Ling C., Mizuno F., Phys. Chem. Chem. Phys., 2014, 16, 10419 |
[76] | Wen Y., He K., Zhu Y. J., Han F. D., Xu Y. H., Matsuda I., Ishii Y., Cumings J., Wang C. S., Nat. Commun., 2014, 5(1), 4033 |
[77] | Ma Y., Guo Q., Yang M., Wang Y., Chen T., Chen Q., Zhu X., Xia Q., Li S., Xia H., Energy Storage Materials, 2018, 13, 134 |
[78] | Chen L., Yan R., Oschatz M., Jiang L., Antonietti M., Xiao K., Angew. Chem. Int. Ed., 2020, 59, 9067 |
[79] | Li Q. Q., Yao Z. P., Wu J. S., Mitra S., Hao S. Q., Sahu T. S., Li Y., Wolverton C., Dravid V. P., Nano Energy, 2017, 38, 342 |
[80] | Xiao Y., Lee S. H., Sun Y. K., Adv. Energy Mater., 2017, 7, 20 |
[81] | Zhang Z., Zhao H., Teng Y., Chang X., Xia Q., Li Z., Fang J., Du Z., Świerczek K., Adv. Energy Mater., 2018, 8, 1700174 |
[82] | Wang G., Zhang J., Yang S., Wang F., Zhuang X., Müllen K., Feng X., Adv. Energy Mater., 2018, 8, 1702254 |
[83] | Wang L., Zhang Q., Zhu J., Duan X., Xu Z., Liu Y., Yang H., Lu B., Energy Storage Mater., 2019, 16, 37 |
[84] | Li X., Feng Z., Zai J., Ma Z. F., Qian X., J. Power Sources, 2018, 373, 103 |
[85] | Sun D., Ye D., Liu P., Tang Y., Guo J., Wang L., Wang H., Adv. Energy Mater., 2018, 8, 1702383 |
[86] | Lacey S. D., Wan J., Cresce A. V. W., Russell S. M., Dai J., Bao W., Xu K., Hu L., Nano Lett., 2015, 15, 1018 |
[87] | Zhu C., Mu X., Aken P. A., Yu Y., Maier J., Angew. Chem. Int. Edit., 2014, 53, 2152 |
[88] | Gao P., Wang L. P., Zhang Y. Y., Huang Y., Liu K. H., ACS Nano, 2015, 9(11), 11296 |
[89] | Liu G., Cui J., Luo R., Liu Y., Huang X., Wu N., Jin X., Chen H., Tang S., Kim J., Liu X., Appl. Surf. Sci., 2019, 469, 854 |
[90] | Su D. W., Dou S. X., Wang G. X., Adv. Energy Mater., 2015, 5, 6 |
[91] | Han M. H., Gonzalo E., Singh G., Rojo T., Energy Environ. Sci., 2015, 8, 81 |
[92] | Kim H., Kim H., Ding Z., Lee M. H., Lim K., Yoon G., Kang K., Adv. Energy Mater., 2016, 6, 38 |
[93] | Zhao Y., Wang L. P., Sougrati M. T., Feng Z. X., Leconte Y., Fisher A., Srinivasan M., Xu Z. C., Adv. Energy Mater., 2017, 7, 70 |
[94] | White E. R., Singer S. B., Augustyn V., Hubbard W. A., Mecklenburg M., Dunn B., Regan B. C., ACS Nano, 2012, 6(7), 8308 |
[95] | Xie F. X., Zhang L., Su D. W., Jaroniec M., Qiao S. Z., Adv. Mater., 2017, 29, 6 |
[96] | Fu S. D., Ni J. F., Xu Y., Zhang Q., Li L., Nano Lett., 2016, 16, 4544 |
[97] | Cabana J., Monconduit L., Larcher D., Palacín M. R., Adv. Mater., 2010, 22, E170 |
[98] | Zhang L., Wang Y., Xie D., Tang Y., Wu C., Cui L., Li Y., Ning X., Shan Z., RSC Advances, 2016, 6, 11441 |
[99] | He K., Lin F., Zhu Y., Yu X., Li J., Lin R., Nordlund D., Weng T. C., Richards R. M., Yang X. Q., Doeff M. M., Stach E. A., Mo Y., Xin H. L., Su D., Nano Lett., 2015, 15(9), 5755 |
[100] | Wang L., Wei Z., Mao M., Wang H., Li Y., Ma J., Energy Storage Materials, 2019, 16, 434 |
[101] | Kim Y., Ha K. H., Oh S. M., Lee K. T., Chemistry-A European Journal, 2014, 20, 11980 |
[102] | Gu M., Kushima A., Shao Y., Zhang J. G., Liu J., Browning N. D., Li J., Wang C., Nano Lett., 2013, 13(11), 5203 |
[103] | Chen W., Song K., Mi L., Feng X., Zhang J., Cui S., Liu C., J. Mater. Chem. A, 2017, 5, 10027 |
[104] | Su D., Ahn H. J., Wang G., Chem. Commun., 2013, 49, 3131 |
[105] | Liu H., Cao F., Zheng H., Sheng H., Li L., Wu S., Liu C., Wang J., Chem. Commun., 2015, 51, 10443 |
[106] | Jian Z., Liu P., Li F., Chen M., Zhou H., J. Mater. Chem. A, 2014, 2, 13805 |
[107] | Luo W., Shen F., Bommier C., Zhu H., Ji X., Hu L., Acc. Chem. Res., 2016, 49, 231 |
[108] | Zhu Y., Choi S. H., Fan X., Shin J., Ma Z., Zachariah M. R., Choi J. W., Wang C., Adv. Energy Mater., 2017, 7, 1601578 |
[109] | Chen D., Peng L., Yuan Y., Zhu Y., Fang Z., Yan C., Chen G., Shahbazian-Yassar R., Lu J., Amine K., Yu G., Nano Lett., 2017, 17, 3907 |
[110] | Klein F., Jache B., Bhide A., Adelhelm P., Phys. Chem. Chem. Phys., 2013, 15, 15876 |
[111] | Hwang I., Jung S. K., Jeong E. S., Kim H., Cho S. P., Ku K., Kim H., Yoon W. S., Kang K., Nano Res., 2017, 10, 4388 |
[112] | Zhou L., Zhang K., Sheng J., An Q., Tao Z., Kang Y. M., Chen J., Mai L., Nano Energy, 2017, 35, 281 |
[113] | He K., Zhou Y., Gao P., Wang L., Pereira N., Amatucci G. G., Nam K. W., Yang X. Q., Zhu Y., Wang F., Su D., ACS Nano, 2014, 8, 7251 |
[114] | Boebinger M., Yeh D., Xu M., Miles B. C., Wang B., Papakyriakou M., Lewis J. A., Kondekar N. P., Cortes F. J. Q., Hwang S., Sang X., Su D., Unocic R. R., Xia S., Zhu T., McDowell M. T., Joule, 2018, 2, 1 |
[115] | Fang W., Liu D., Lu Q., Sun X., Asiri A. M., Elect. Commun., 2016, 63, 60 |
[116] | Alqarni A. S., Yassin O. A., Mater. Sci. Semicond. Process, 2016, 42, 390 |
[117] | Chen Q., Lu F., Xia Y., Wang H., Kuang X., J. Mater. Chem. A, 2017, 5, 4075 |
[118] | Suo G., Li D., Feng L., Hou X., Yu Q., Yang Y., Wang W. A., Materials Letters, 2019, 236, 312 |
[119] | Jia H., Chen C., Oladele O., Tang Y., Li G., Zhang X., Yan F., Communications Chemistry, 2018, 1, 86 |
[120] | Wang X., Yao Z., Hwang S., Pan Y., Dong H., Fu M., Li N., Sun K., Gan H., Yao Y., Guzik A., Xu Q., Su D., ACS Nano, 2019, 13, 9421 |
[121] | Zhang N., Han X., Liu Y., Hu X., Zhao Q., Chen J., Adv. Energy Mater., 2015, 5, 1401123 |
[122] | Chen M., Chao D., Liu J., Yan J., Zhang B., Huang Y., Lin J., Shen Z. X., Adv. Funct. Mater., 2017, 27, 1606232 |
[123] | Su Q., Du G., Zhang J., Zhong Y., Xu B., Yang Y., Neupane S., Li W., ACS Nano, 2014, 8, 3620 |
[124] | Wang R., Xu C., Sun J., Gao L., Lin C., J. Mater. Chem. A, 2013, 1, 1794 |
[125] | Chen Y., Song B., Lu L., Xue J., Nanoscale, 2013, 5, 6797 |
[126] | Prabakar S. J., Hwang Y., Bae E., Shim S., Kim D., Lah M. S., Sohn K., Pyo M., Adv. Mater., 2013, 25, 3307 |
[127] | Zhang G., Liu K., Liu S., Song H., Zhou J., Journal of Alloys and Compounds, 2018, 731, 714 |
[128] | Xie D., Xia X., Zhong Y., Wang Y., Wang D., Wang X., Tu J., Adv. Energy Mater., 2017, 7, 1601804 |
[129] | Zhang K., Hu Z., Liu X., Tao Z., Chen J., Adv. Mater., 2015, 27, 3305 |
[130] | Cho J. S., Lee S. Y., Kang Y. C., Sci. Rep., 2016, 6, 23338 |
[131] | Hu H., Zhang J., Guan B., Lou X. W., Angew. Chem., Int. Ed., 2016, 55, 9514 |
[132] | Li Y., Xu Y., Wang Z., Bai Y., Zhang K., Dong R., Gao Y., Ni Q., Wu F., Liu Y., Wu C., Adv. Energy Mater., 2018, 1800927 |
[133] | Mortazavi M., Ye Q., Birbilis N., Medhekar N. V., J. Power Sources, 2015, 285, 29 |
[134] | Kim Y., Park Y., Choi A., Choi N. S., Kim J., Lee J., Ryu J. H., Oh S. M., Lee K. T., Adv. Mater., 2013, 25, 3045 |
[135] | Ellis L. D., Wilkes B. N., Hatchard T. D., Obrovac M. N., J. Electrochem. Soc., 2014, 161, A416 |
[136] | Li Z., Tan X., Li P., Kalisvaart P., Janish M. T., Mook W. M., Luber E. J., Jungjohann K. L., Carter C. B., Mitlin D., Nano Lett., 2015, 15(10), 6339 |
[137] | Wang J. W., Liu X. H., Mao S. X., Huang J. Y., Nano Lett., 2012, 12(11), 5897 |
[138] | Liu Y., Xu Y., Zhu Y., Culver J. N., Lundgren C. A., Xu K., Wang C., ACS Nano, 2013, 7, 3627 |
[139] | Luo W., Shen F., Bommier C., Zhu H. L., Ji X. L., Hu L. B., Accounts Chem. Res., 2016, 49, 231 |
[140] | Lu X. E., Adkins R., He Y., Zhong L., Luo L., Mao S. X., Wang C. M., Korgel B. A., Chem. Mat., 2016, 28(4), 1236 |
[141] | Li W. H., Yang Z. Z., Li M. S., Jiang Y., Wei X., Zhong X. W., Gu L., Yu Y., Nano Lett., 2016, 16, 1546 |
[142] | Qian J., Wu X., Cao Y., Ai X., Yang H., Angew. Chem., 2013, 125, 4731 |
[143] | Yang Q. R., Li W. J., Chou S. L., Wang J. Z., Liu H. K., Rsc Advances, 2015, 5, 80536 |
[144] | Nie A., Cheng Y., Ning S., Foroozan T., Yasaei P., Li W., Song B., Yuan Y., Chen L., Salehi-Khojin A., Mashayek F., Shahbazian-Yassar R., Nano Lett., 2016, 16, 2240 |
[145] | Sun J., H. Lee W., Pasta M., Yuan H. T., Zheng G. Y., Sun Y. M., Li Y. Z., Cui Y., Nat. Nanotechnol., 2015, 10, 980 |
[146] | Lei K., Wang C., Liu L., Luo Y., Mu C., Li F., Chen J., Angew. Chem., Int. Ed., 2018, 57, 4687 |
[147] | Wang C., Wang L., Li F., Cheng F., Chen J., Adv. Mater., 2017, 29, 1702212 |
[148] | Chen J., Fan X. L., Ji X., Gao T., Hou S., Zhou X. Q., L. Wang N., Wang F., Yang C. Y., Chen L., Wang C. S., Energy Environ. Sci., 2018, 11, 1218 |
[149] | Yuan Y., Wang C. C., Lei K. X., Li H. X., Li F. J., Chen J., ACS Cent. Sci., 2018, 4, 1261 |
[150] | Zhou J., Chen J., Chen M., Wang J., Liu X., Wei B., Wang Z., Li J., Gu L., Zhang Q., Wang H., Guo L., Adv. Mater., 2019, 1807874 |
[151] | Sun Z., Liao T., Dou Y., Hwang S. M., Park M. S., Jiang L., Kim J. H., Dou S. X., Nat. Commun., 2014, 5, 3813 |
[152] | Guignard M., Didier C., Darriet J., Bordet P., Elkaim E., Delmas C., Nat. Mater., 2013, 12(1), 74 |
[153] | Guo S., Yi J., Sun Y., Zhou H., Energy Environ. Sci., 2016, 9, 2978 |
[154] | Li Z. Y., Gao R., Zhang J. C., Zhang X. L., Hu Z. B., Liu X. F., J. Mater. Chem. A, 2016, 4, 3453 |
[155] | Xu G. L., Amine R., Xu Y. F., Liu J. Z., Gim J., Ma T. Y., Ren Y., Sun C. J., Liu Y. Z., Zhang X. Y., Heald S. M., Solhy A., Saadoune I., Mattis W. L., Sun S. G., Chen Z. H., Amine K., Energy Environ. Sci., 2017, 10, 1677 |
[156] | Yao H. R., Wang P. F., Gong Y., Zhang J., Yu X., Gu L., Ouyang C., Yin Y. X., Hu E., Yang X. Q., Stavitski E., Guo Y. G., Wan L. J., J. Am. Chem. Soc., 2017, 139, 8440 |
[157] | Mortemard de Boisse B., Liu G., Ma J., Nishimura S. I., Chung S. C., Kiuchi H., Harada Y., Kikkawa J., Kobayashi Y., Okubo M., Yamada A., Nat. Commun., 2016, 7, 11397 |
[158] | Wang P., Xin H., Zuo T., Li Q., Yang X., Yin Y., Gao X., Yu X., Guo Y., Angew. Chem., Int. Ed., 2018, 57, 8178 |
[159] | Zhao C., Ding F., Lu Y., Chen L., Hu Y., Angew. Chem., Int. Ed., 2020, 132, 270 |
[160] | Ma C. Z., Alvarado J., Xu J., Clement R. J., Kodur M., Tong W., Grey C. P., Meng Y. S., J. Am. Chem. Soc., 2017, 139, 4835 |
[161] | Zhang K., Kim D., Hu Z., Park M., Noh G., Yang Y., Zhang J., Lau V. W., Chou S., Cho M., Choi S., Kang Y., Nat. Commun., 2019, 10, 5203 |
[162] | Liu P., Zhu K., Gao Y., Luo H., Lu L., Adv. Energy Mater., 2017, 7(23), 1700547 |
[163] | Tepavcevic S., Xiong H., Stamenkovic V. R., Zuo X., Balasubramanian M., Prakapenka V. B., Johnson C. S., Rajh T., ACS Nano, 2012, 6(1), 530 |
[164] | Raju V., Rains J., Gates C., Luo W., Wang X., Stickle W. F., Stucky G. D., Ji X., Nano Lett., 2014, 14, 4119 |
[165] | Tao X., Wang K., Wang H., Li Q., Xia Y., Huang H., Gan Y., Liang C., Zhang W., J. Mater. Chem. A, 2015, 3, 3044 |
[166] | Su D., Wang G., ACS Nano, 2013, 7(12), 11218 |
[167] | Xu X., Yan M., Tian X., Yang C., Shi M., Wei Q., Xu L., Mai L., Nano Lett., 2015, 15, 3879 |
[168] | Zhao Q., Zhu Z. Q., Chen J., Adv. Mater., 2017, 29, 1607007 |
[169] | Xiao P. T., Xu Y. X., J. Mater. Chem. A, 2018, 6, 21676 |
[170] | Jiang C., Angew. Chem. Int. Ed., 2018, 57, 16072 |
[171] | Wu S. F., Nat. Commun., 2016, 7, 13318 |
[172] | Liu Y., Chem., 2018, 4, 2463 |
[173] | Feng X., Ding X. S., Jiang D. L., Chem. Soc. Rev., 2012, 41, 6010 |
[174] | Shi R., Liu L., Lu Y., Wang C., Li Y., Li L., Yan Z., Chen J., Nat. Commun., 2020, 11, 178 |
[175] | Muldoon J., Bucur C. B., Oliver A. G., Sugimoto T., Matsui M., Kim H. S., Allred G. D., Zajicek J., Kotani Y., Energy Environ. Sci., 2012, 5, 5941 |
[176] | Lin M. C., Gong M., Lu B. G., Wu Y. P., Wang D. Y., Guan M. Y., Angell M., Chen C. X., Yang J., Hwang B. J., Dai H. J., Nature, 2015, 520, 325 |
[177] | Liu Y., Fan F., Wang J., Liu Y., Chen H., Jungjohann K. L., Xu Y., Zhu Y., Bigio D., Zhu T., Wang C., Nano Lett., 2014, 14(16), 3445 |
[178] | Zhang W., Pang W. K., Sencadas V., Guo Z., Joule, 2018, 2, 1534 |
[179] | He Y., Gu M., Xiao H. Y., Luo L. L., Shao Y. Y., Gao F., Du Y. G., Mao S. X., Wang C. M., Angew. Chem. Int. Ed., 2016, 55, 6244 |
[180] | Luo L. L., Wu J. S., Li Q. Q., Dravid V. P., Poeppelmeier K. R., Rao Q. L., Xu J. M., Nanotechnology, 2016, 27(8), 085402 |
[181] | Wan L. F., Perdue B. R., Apblett C. A., Prendergast D., Chem. Mater., 2015, 27, 5932 |
[182] | Li Z., Mu X., Zhao-Karger Z., Diemant T., Jürgen Be R., Kübel C., Fichtner M., Nat. Commun., 2018, 9, 5115 |
[183] | Jiang P., Shao H., Chen L., Feng J., Liu Z., J. Mater. Chem. A, 2017, 5, 16740 |
[184] | Chen L., Shao H., Zhou X., Liu G., Jiang J., Liu Z., Nat. Commun., 2016, 7, 11982 |
[185] | Bruce P. G., Freunberger S. A., HardwickLaurence J., Tarascon J. M., Nat. Mater., 2012, 11, 172 |
[186] | Younesi R., Veith G. M., Johansson P., Edstrom K., Vegge T., Energy Environ. Sci., 2015, 8, 1905 |
[187] | Lin D. C., Liu Y. Y., Cui Y., Nat. Nanotechnol., 2017, 12, 194 |
[188] | Wild M., O'Neill L., Zhang T., Purkayastha R., Minton G., Marinescu M., Offer G. J., Energy Environ. Sci., 2015, 8, 3477 |
[189] | Seh Z. W., Sun Y. M., Zhang Q. F., Cui Y., Chem. Soc. Rev., 2016, 45, 5605 |
[190] | Kim H., Lee J. T., Magasinski A., Zhao K., Liu Y., Yushin G., Adv. Energy Mater., 2015, 5, 1501306 |
[191] | Tan G., Xu R., Xing Z., Yuan Y., Lu J., Wen J., Liu C., Ma L., Zhan C., Liu Q., Wu T., Jian Z., Shahbazian-Yassar R., Ren Y., Miller D. J., Curtiss L. A., Ji X., Amine K., Nat. Energy, 2017, 2, 17090 |
[192] | Xu R., Belharouak I., Zhang X., Chamoun R., Yu C., Ren Y., Nie A., Shahbazian-Yassar R., Lu J., Li J. C. M., Amine K., ACS Applied Materials & Interfaces, 2014, 6, 21938 |
[193] | Zhao Q., Hu X., Zhang K., Zhang N., Hu Y., Chen J., Nano Lett., 2015, 15, 721 |
[194] | See K. A., Leskes M., Griffin J. M., Britto S., Matthews P. D., Emly A., van der Ven A., Wright D. S., Morris A. J., Grey C. P., Seshadri R., J. Am. Chem. Soc., 2014, 136(46), 16368 |
[195] | Xu Z., Kim S., Chang D., Park K., Dae K., Dao K., Yuk J., Kang K., Energy Environ. Sci., 2019, 12, 3144 |
[196] | Lang S. Y., Shi Y., Guo Y. G., Wang D., Wen R., Wan L. J., Angew. Chem. Int. Ed., 2016, 55, 15835 |
[197] | Mahankali K., Thangavel N. K., Arava L. M. R., Nano Lett., 2019, 19, 5229 |
[198] | Mahne N., Fontaine O., Thotiyl M. O., Wilkening M., Freunberger S. A., Chem. Sci., 2017, 8, 6716 |
[199] | Tulodziecki M., Leverick G. M., Amanchukwu C. V., Katayama Y., Kwabi D. G., Barde F., Hammond P. T., Shao-Horn Y., Energy Environ. Sci., 2017, 10, 1828 |
[200] | Wang P., Ren Y., Wang R., Zhang P., Ding M., Li C., Zhao D., Qian Z., Zhang Z., Zhang L., Yin L., Nat. Commun., 2020, 11, 1576 |
[201] | Zhong L., Mitchell R. R., Liu Y., Gallant B. M., Thompson C. V., Huang J. Y., Mao S. X., Shao-Horn Y., Nano Lett., 2013, 13, 2209 |
[202] | Kushima A., Koido T., Fujiwara Y., Kuriyama N., Kusumi N., Li J., Nano Lett., 2015, 15, 8260 |
[203] | Zheng H., Xiao D., Li X., Liu Y., Wu Y., Wang J., Jiang K., Chen C., Gu L., Wei X., Hu Y. S., Chen Q., Li H., Nano Lett., 2014, 14, 4245 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||