高等学校化学研究 ›› 2020, Vol. 36 ›› Issue (4): 597-610.doi: 10.1007/s40242-020-0183-2
SUN Rongbo, GUO Wenxin, HAN Xiao, HONG Xun
收稿日期:
2020-06-14
修回日期:
2020-06-30
出版日期:
2020-08-01
发布日期:
2020-07-30
通讯作者:
HONG Xun
E-mail:hongxun@ustc.edu.cn
基金资助:
SUN Rongbo, GUO Wenxin, HAN Xiao, HONG Xun
Received:
2020-06-14
Revised:
2020-06-30
Online:
2020-08-01
Published:
2020-07-30
Contact:
HONG Xun
E-mail:hongxun@ustc.edu.cn
Supported by:
摘要: Two-dimensional noble metal nanomaterials(2D NMNs) are widely used as electrocatalyst. In recent years, the researchers have focused on the synthesis of 2D NMNs at the atomic scale, and realize the improvement of electrocatalytic performance through further structural modification to reduce the usage of noble metals. Herein, we systematically introduce the synthesis methods of 2D NMNs categorized by element type. Subsequently, the catalytic applications toward a variety of electrocatalytic reactions are described in detail including the hydrogen evolution reaction(HER), oxygen reduction reaction(ORR), oxygen evolution reaction(OER) and CO2 reduction reaction (CO2RR). Finally, the potential opportunities and remaining challenges in this emerging research area are proposed.
SUN Rongbo, GUO Wenxin, HAN Xiao, HONG Xun. Two-dimensional Noble Metal Nanomaterials for Electrocatalysis[J]. 高等学校化学研究, 2020, 36(4): 597-610.
SUN Rongbo, GUO Wenxin, HAN Xiao, HONG Xun. Two-dimensional Noble Metal Nanomaterials for Electrocatalysis[J]. Chemical Research in Chinese Universities, 2020, 36(4): 597-610.
[1] | Tan C., Cao X., Wu X. J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G. H., Sindoro M., Zhang H., Chem. Rev.,2017, 117, 6225 |
[2] | Nasilowski M., Mahler B., Lhuillier E., Ithurria S., Dubertret B., Chem. Rev.,2016, 116, 10934 |
[3] | Jin H., Guo C., Liu X., Liu J., Vasileff A., Jiao Y., Zheng Y., Qiao S. Z., Chem. Rev.,2018, 118, 6337 |
[4] | Deng D., Novoselov K. S., Fu Q., Zheng N., Tian Z., Bao X., Nat. Nanotechnol.,2016, 11, 218 |
[5] | Xia Y., Yang X., Accounts Chem. Res.,2017, 50, 450 |
[6] | Luo Y., Liu Z., Wu G., Wang G., Chao T., Li H., Liu J., Hong X., Chin. Chem. Lett.,2019, 30, 1093 |
[7] | Ge Y., Shi Z., Tan C., Chen Y., Cheng H., He Q., Zhang H., Chem.,2020, 6, 1237 |
[8] | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science,2004, 306, 666 |
[9] | Nair R. R., Blake P., Grigorenko A. N., Novoselov K. S., Booth T. J., Stauber T., Peres N. M., Geim A. K., Science,2008, 320, 1308 |
[10] | Weng Q., Wang X., Wang X., Bando Y., Golberg D., Chem. Soc. Rev.,2016, 45, 3989 |
[11] | Zhang J., Chen Y., Wang X., Energy Environ. Sci.,2015, 8, 3092 |
[12] | Hong X., Tan C., Chen J., Xu Z., Zhang H., Nano Res.,2014, 8, 40 |
[13] | Peng Y., Li Y., Ban Y., Jin H., Jiao W., Liu X., Yang W., Science,2014, 346, 1356 |
[14] | Peng Y., Huang Y., Zhu Y., Chen B., Wang L., Lai Z., Zhang Z., Zhao M., Tan C., Yang N., Shao F., Han Y., Zhang H., J. Am. Chem. Soc.,2017, 139, 8698 |
[15] | Wu G., Chen W., Zheng X., He D., Luo Y., Wang X., Yang J., Wu Y., Yan W., Zhuang Z., Hong X., Li Y., Nano Energy,2017, 38, 167 |
[16] | Ling T., Wang J. J., Zhang H., Song S. T., Zhou Y. Z., Zhao J., Du X. W., Adv. Mater.,2015, 27, 5396 |
[17] | Ma Y., Li B., Yang S., Mater. Chem. Front.,2018, 2, 456 |
[18] | Cheng H., Yang N., Lu Q., Zhang Z., Zhang H., Adv. Mater.,2018, 30, e1707189 |
[19] | Zeb Gul Sial M. A., Ud Din M. A., Wang X., Chem. Soc. Rev.,2018, 47, 6175 |
[20] | Zhang B., Zheng X., Voznyy O., Comin R., Bajdich M., Garcia-Melchor M., Han L., Xu J., Liu M., Zheng L., Arquer F. P. G., Dinh C. T., Fan F., Yuan M., Yassitepe E., Chen N., Regier T., Liu P., Li Y., Luna P. D., Janmohamed A., Xin H. L., Yang H., Vojvodic A., Sargent E. H., Science,2016, 352, 333 |
[21] | Jiao Y., Zheng Y., Jaroniec M., Qiao S. Z., Chem. Soc. Rev.,2015, 44, 2060 |
[22] | Debe M. K., Nature,2012, 486, 43 |
[23] | Chao T., Hu Y., Hong X., Li Y., ChemElectroChem,2019, 6, 289 |
[24] | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Norskov J. K., Jaramillo T. F., Science,2017, 355, eaad4998 |
[25] | Shao M., Chang Q., Dodelet J. P., Chenitz R., Chem. Rev.,2016, 116, 3594 |
[26] | Strmcnik D., Uchimura M., Wang C., Subbaraman R., Danilovic N., van der Vliet D., Paulikas A. P., Stamenkovic V. R., Markovic N. M., Nat. Chem.,2013, 5, 300 |
[27] | Suen N. T., Hung S. F., Quan Q., Zhang N., Xu Y. J., Chen H. M., Chem. Soc. Rev.,2017, 46, 337 |
[28] | Zhu D. D., Liu J. L., Qiao S. Z., Adv. Mater.,2016, 28, 3423 |
[29] | Kulkarni A., Siahrostami S., Patel A., Norskov J. K., Chem. Rev.,2018, 118, 2302 |
[30] | McCrory C. C., Jung S., Ferrer I. M., Chatman S. M., Peters J. C., Jaramillo T. F., J. Am. Chem. Soc.,2015, 137, 4347 |
[31] | Liu H. L., Nosheen F., Wang X., Chem. Soc. Rev.,2015, 44, 3056 |
[32] | Liu S., Tian N., Xie A. Y., Du J. H., Xiao J., Liu L., Sun H. Y., Cheng Z. Y., Zhou Z. Y., Sun S. G., J. Am. Chem. Soc.,2016, 138, 5753 |
[33] | Hong X., Wang D., Cai S., Rong H., Li Y., J. Am. Chem. Soc.,2012, 134, 18165 |
[34] | Ge J., Li Z., Hong X., Li Y., Chem. Eur. J.,2019, 25, 5113 |
[35] | Zou X., Zhang Y., Chem. Soc. Rev.,2015, 44, 5148 |
[36] | Hunter B. M., Gray H. B., Muller A. M., Chem. Rev.,2016, 116, 14120 |
[37] | Yang M. Q., Wang J., Wu H., Ho G. W., Small,2018, 14, e1703323 |
[38] | Zhu C., Du D., Eychmuller A., Lin Y., Chem. Rev.,2015, 115, 8896 |
[39] | Ren X., Lv Q., Liu L., Liu B., Wang Y., Liu A., Wu G., Sust. Energy Fuels,2020, 4, 15 |
[40] | Wang Y., Mao J., Meng X., Yu L., Deng D., Bao X., Chem. Rev.,2019, 119, 1806 |
[41] | An B., Li M., Wang J., Li C., Front. Chem. Sci. Eng.,2016, 10, 360 |
[42] | Feng Y., Huang B., Yang C., Shao Q., Huang X., Adv. Funct. Mater.,2019, 29, 1904429 |
[43] | Zhang H., ACS Nano,2015, 9, 9451 |
[44] | Chia X., Pumera M., Nat. Catal.,2018, 1, 909 |
[45] | Dou Y., Zhang L., Xu X., Sun Z., Liao T., Dou S. X., Chem. Soc. Rev.,2017, 46, 7338 |
[46] | Xia Y., Xiong Y., Lim B., Skrabalak S. E., Angew. Chem. Int. Ed., 2009, 48, 60 |
[47] | Luo M., Sun Y., Wang L., Guo S., Adv. Energy Mater.,2017, 7, 1602073 |
[48] | Liz-Marzan L. M., Grzelczak M., Science,2017, 356, 1120 |
[49] | Xie S., Liu X. Y., Xia Y., Nano Res.,2015, 8, 82 |
[50] | Chen Y., Fan Z., Zhang Z., Niu W., Li C., Yang N., Chen B., Zhang H., Chem. Rev.,2018, 118, 6409 |
[51] | Fan Z., Zhang H., Accounts Chem. Res.,2016, 49, 2841 |
[52] | Yi M., Shen Z., J. Mater. Chem. A,2015, 3, 11700 |
[53] | Lizmarzan L. M., Grzelczak M., Science,2017, 356, 1120 |
[54] | Wang F., Wang Z., Shifa T. A., Wen Y., Wang F., Zhan X., Wang Q., Xu K., Huang Y., Yin L., Jiang C., He J., Adv. Funct. Mater.,2017, 27, 1603254 |
[55] | Lee J., Yang J., Kwon S. G., Hyeon T., Nat. Rev. Mater.,2016, 1, 16034 |
[56] | Gilroy K. D., Ruditskiy A., Peng H. C., Qin D., Xia Y., Chem. Rev.,2016, 116, 10414 |
[57] | O'Brien M. N., Jones M. R., Kohlstedt K. L., Schatz G. C., Mirkin C. A., Nano Lett.,2015, 15, 1012 |
[58] | Funatsu A., Tateishi H., Hatakeyama K., Fukunaga Y., Taniguchi T., Koinuma M., Matsuura H., Matsumoto Y., Chem. Commun.,2014, 50, 8503 |
[59] | Xu D., Lv H., Jin H., Liu Y., Ma Y., Han M., Bao J., Liu B., J. Phys. Chem. Lett.,2019, 10, 663 |
[60] | Xie B., Zhang Y., Du N., Li H., Hou W., Zhang R., Chem. Commun.,2016, 52, 13815 |
[61] | Liu H., Zhong P., Liu K., Han L., Zheng H., Yin Y., Gao C., Chem. Sci.,2018, 9, 398 |
[62] | Chhetri M., Rana M., Loukya B., Patil P. K., Datta R., Gautam U. K., Adv. Mater.,2015, 27, 4430 |
[63] | Huang X., Zeng Z., Bao S., Wang M., Qi X., Fan Z., Zhang H., Nat. Commun.,2013, 4, 1444 |
[64] | Dai L., Zhao Y., Qin Q., Zhao X., Xu C., Zheng N., ChemNanoMat,2016, 2, 776 |
[65] | Qin Y., Luo M., Sun Y., Li C., Huang B., Yang Y., Li Y., Wang L., Guo S., ACS Catal.,2018, 8, 5581 |
[66] | Bu L., Zhang N., Guo S., Zhang X., Li J., Yao J., Wu T., Lu G., Ma J., Su D., Huang X., Science,2016, 354, 1410 |
[67] | Liao H., Zhu J., Hou Y., Nanoscale,2014, 6, 1049 |
[68] | Saleem F., Zhang Z., Xu B., Xu X., He P., Wang X., J. Am. Chem. Soc.,2013, 135, 18304 |
[69] | Saleem F., Zhang Z., Cui X., Gong Y., Chen B., Lai Z., Yun Q., Gu L., Zhang H., J. Am. Chem. Soc.,2019, 141, 14496 |
[70] | Zhang H., Jin M., Xiong Y., Lim B., Xia Y., Accounts Chem. Res.,2013, 46, 1783 |
[71] | Lim B., Jiang M., Tao J., Camargo P. H. C., Zhu Y., Xia Y., Adv. Funct. Mater.,2009, 19, 189 |
[72] | Luo M., Zhao Z., Zhang Y., Sun Y., Xing Y., Lv F., Yang Y., Zhang X., Hwang S., Qin Y., Ma J. Y., Lin F., Su D., Lu G., Guo S., Nature,2019, 574, 81 |
[73] | Surnev S., Sock M., Ramsey M. G., Netzer F. P., Wiklund M., Borg M., Andersen J. N., Surf. Sci.,2000, 470, 171 |
[74] | Siril P. F., Ramos L., Beaunier P., Archirel P., Etcheberry A., Remita H., Chem. Mater.,2009, 21, 5170 |
[75] | Huang X., Tang S., Mu X., Dai Y., Chen G., Zhou Z., Ruan F., Yang Z., Zheng N., Nat. Nanotechnol.,2010, 6, 28 |
[76] | Li H., Chen G., Yang H., Wang X., Liang J., Liu P., Chen M., Zheng N., Angew. Chem. Int. Ed.,2013, 52, 8368 |
[77] | Yin X., Liu X., Pan Y. T., Walsh K. A., Yang H., Nano Lett.,2014, 14, 7188 |
[78] | Hong J. W., Kim Y., Wi D. H., Lee S., Lee S. U., Lee Y. W., Choi S. I., Han S. W., Angew. Chem. Int. Ed.,2016, 55, 2753 |
[79] | Puntes V. F., Zanchet D., Erdonmez C. K., Alivisatos A. P., J. Am. Chem. Soc.,2002, 124, 12874 |
[80] | Yang N., Zhang Z., Chen B., Huang Y., Chen J., Lai Z., Chen Y., Sindoro M., Wang A. L., Cheng H., Fan Z., Liu X., Li B., Zong Y., Gu L., Zhang H., Adv. Mater.,2017, 29, 1700769.1 |
[81] | Wang Y., Peng H. C., Liu J., Huang C. Z., Xia Y., Nano Lett.,2015, 15, 1445 |
[82] | Huang W., Kang X., Xu C., Zhou J., Deng J., Li Y., Cheng S., Adv. Mater.,2018, 30, 1706962.1 |
[83] | Qiu X., Zhang H., Wu P., Zhang F., Wei S., Sun D., Xu L., Tang Y., Adv. Funct. Mater., 2017,27, 1603852.1 |
[84] | Liu J., Ma Q., Huang Z., Liu G., Zhang H., Adv. Mater.,2019, 31, e1800696 |
[85] | Jiang Y., Yan Y., Chen W., Khan Y., Wu J., Zhang H., Yang D., Chem. Commun.,2016, 52, 14204 |
[86] | He C., Tao J., Shen P. K., ACS Catal.,2018, 8, 910 |
[87] | Hu Y., Luo X., Wu G., Chao T., Li Z., Qu Y., Li H., Wu Y., Jiang B., Hong X., ACS Appl. Mater. Interfaces,2019, 11, 42298 |
[88] | Ge J., He D., Chen W., Ju H., Zhang H., Chao T., Wang X., You R., Lin Y., Wang Y., Zhu J., Li H., Xiao B., Huang W., Wu Y., Hong X., Li Y., J. Am. Chem. Soc.,2016, 138, 13850 |
[89] | Ge J., Wei P., Wu G., Liu Y., Yuan T., Li Z., Qu Y., Wu Y., Li H., Zhuang Z., Hong X., Li Y., Angew. Chem. Int. Ed.,2018, 57, 3435 |
[90] | Li N., Zhao P., Astruc D., Angew. Chem. Int. Ed., 2014, 53, 1756 |
[91] | Fan Z., Huang X., Chen Y., Huang W., Zhang H., Nat. Protoc.,2017, 12, 2367 |
[92] | Chen C. C., Hsu C. H., Kuo P. L., Langmuir,2007, 23, 6801 |
[93] | Jang M. H., Kim J. K., Tak H., Yoo H., J. Mater. Chem.,2011, 21, 17606 |
[94] | Hong X., Tan C. L., Liu J. Q., Yang J., Wu X. J., Fan Z. X., Luo Z. M., Chen J. Z., Zhang X., Chen B., Zhang H., J. Am. Chem. Soc.,2015, 137, 1444 |
[95] | Tsuji M., Gomi S., Maeda Y., Matsunaga M., Hikino S., Uto K., Tsuji T., Kawazumi H., Langmuir,2012, 28, 8845 |
[96] | Lohse S. E., Burrows N. D., Scarabelli L., Liz-Marzán L. M., Murphy C. J., Chem. Mat.,2013, 26, 34 |
[97] | Hwang S. Y., Zhang M., Zhang C., Ma B., Zheng J., Peng Z., Chem. Commun.,2014, 50, 14013 |
[98] | Chen M., Wu B., Yang J., Zheng N., Adv. Mater.,2012, 24, 862 |
[99] | Long R., Zhou S., Wiley B. J., Xiong Y., Chem. Soc. Rev.,2014, 43, 6288 |
[100] | Chen L., Ji F., Xu Y., He L., Mi Y., Bao F., Sun B., Zhang X., Zhang Q., Nano Lett.,2014, 14, 7201 |
[101] | Huang X., Qi X., Huang Y., Li S., Xue C., Gan C. L., Boey F., Zhang H., ACS Nano,2010, 4, 6196 |
[102] | Shaik F., Zhang W., Niu W., J. Phys. Chem. C,2017, 121, 9572 |
[103] | Brus L., Nat. Mater.,2016, 15, 824 |
[104] | DuChene J. S., Niu W., Abendroth J. M., Sun Q., Zhao W., Huo F., Wei W. D., Chem. Mater.,2012, 25, 1392 |
[105] | Zhai Y., DuChene J. S., Wang Y. C., Qiu J., Johnston-Peck A. C., You B., Guo W., DiCiaccio B., Qian K., Zhao E. W., Ooi F., Hu D., Su D., Stach E. A., Zhu Z., Wei W. D., Nat. Mater.,2016, 15, 889 |
[106] | Niu J., Wang D., Qin H., Xiong X., Tan P., Li Y., Liu R., Lu X., Wu J., Zhang T., Ni W., Jin J., Nat. Commun.,2014, 5, 3313 |
[107] | Zhou M., Lin M., Chen L., Wang Y., Guo X., Peng L., Guo X., Ding W., Chem. Commun.,2015, 51, 5116 |
[108] | Wang L., Zhu Y., Wang J. Q., Liu F., Huang J., Meng X., Basset J. M., Han Y., Xiao F. S., Nat. Commun.,2015, 6, 6957 |
[109] | Huang X., Li S., Huang Y., Wu S., Zhou X., Li S., Gan C. L., Boey F., Mirkin C. A., Zhang H., Nat. Commun.,2011, 2, 292 |
[110] | Fan Z., Bosman M., Huang X., Huang D., Yu Y., Ong K. P., Akimov Y. A., Wu L., Li B., Wu J., Huang Y., Liu Q., Png C. E., Gan C. L., Yang P., Zhang H., Nat. Commun.,2015, 6, 7684 |
[111] | Fan Z., Zhu Y., Huang X., Han Y., Zhang H., Angew. Chem. Int. Ed.,2015, 54, 5672 |
[112] | Fan Z., Luo Z., Huang X., Li B., Chen Y., Wang J., Hu Y., Zhang H., J. Am. Chem. Soc.,2016, 138, 1414 |
[113] | Fan Z., Luo Z., Chen Y., Wang J., Li B., Zong Y., Zhang H., Small,2016, 12, 3908 |
[114] | Millstone J. E., Hurst S. J., Metraux G. S., Cutler J. I., Mirkin C. A., Small,2009, 5, 646 |
[115] | Jin R., Cao Y., Mirkin C. A., Kelly K. L., Schatz G. C., Zheng J. G., Science,2001, 294, 1901 |
[116] | Jin R., Cao Y. C., Hao E., Metraux G. S., Schatz G. C., Mirkin C. A., Nature,2003, 425, 487 |
[117] | Xue C., Millstone J. E., Li S., Mirkin C. A., Angew. Chem. Int. Ed.,2007, 46, 8436 |
[118] | Kim M. H., Kwak S. K., Im S. H., Lee J. B., Choi K. Y., Byun D. J., J. Mater. Chem. C,2014, 2, 6165 |
[119] | Zhang Q., Li N., Goebl J., Lu Z., Yin Y., J. Am. Chem. Soc.,2011, 133, 18931 |
[120] | Zeng J., Xia X., Rycenga M., Henneghan P., Li Q., Xia Y., Angew. Chem. Int. Ed.,2011, 50, 244 |
[121] | Liu H., Tang H., Fang M., Si W., Zhang Q., Huang Z., Gu L., Pan W., Yao J., Nan C., Wu H., Adv. Mater.,2016, 28, 8170 |
[122] | Chiou W. H., Wang Y. W., Kao C. L., Chen P. C., Wu C. C., Organometallics,2014, 33, 4240 |
[123] | Zhao L., Xu C., Su H., Liang J., Lin S., Gu L., Wang X., Chen M., Zheng N., Adv. Sci.,2015, 2, 1500100 |
[124] | Hou C., Zhu J., Liu C., Wang X., Kuang Q., Zheng L., CrystEngComm,2013, 15, 6127 |
[125] | Duan H., Yan N., Yu R., Chang C. R., Zhou G., Hu H. S., Rong H., Niu Z., Mao J., Asakura H., Tanaka T., Dyson P. J., Li J., Li Y., Nat. Commun.,2014, 5, 3093 |
[126] | Pi Y., Zhang N., Guo S., Guo J., Huang X., Nano Lett.,2016, 16, 4424 |
[127] | Jiang B., Guo Y., Kim J., Whitten A. E., Wood K., Kani K., Rowan A. E., Henzie J., Yamauchi Y., J. Am. Chem. Soc.,2018, 140, 12434 |
[128] | Yin A. X., Liu W. C., Ke J., Zhu W., Gu J., Zhang Y. W., Yan C. H., J. Am. Chem. Soc.,2012, 134, 20479 |
[129] | Kong X., Xu K., Zhang C., Dai J., Norooz Oliaee S., Li L., Zeng X., Wu C., Peng Z., ACS Catal.,2016, 6, 1487 |
[130] | Yao Q., Huang B., Zhang N., Sun M., Shao Q., Huang X., Angew. Chem. Int. Ed.,2019, 58, 13983 |
[131] | Mao J., He C. T., Pei J., Chen W., He D., He Y., Zhuang Z., Chen C., Peng Q., Wang D., Li Y., Nat. Commun.,2018, 9, 4958 |
[132] | Wu G., Zheng X., Cui P., Jiang H., Wang X., Qu Y., Chen W., Lin Y., Li H., Han X., Hu Y., Liu P., Zhang Q., Ge J., Yao Y., Sun R., Wu Y., Gu L., Hong X., Li Y., Nat. Commun.,2019, 10, 4855 |
[133] | Chhowalla M., Shin H. S., Eda G., Li L. J., Loh K. P., Zhang H., Nat. Chem.,2013, 5, 263 |
[134] | Wang Q., O'Hare D., Chem. Rev.,2012, 112, 4124 |
[135] | Naguib M., Mochalin V. N., Barsoum M. W., Gogotsi Y., Adv. Mater.,2014, 26, 992 |
[136] | Wang G., Tao J., Zhang Y., Wang S., Yan X., Liu C., Hu F., He Z., Zuo Z., Yang X., ACS Appl. Mater. Interfaces,2018, 10, 25409 |
[137] | Lu X., Xie S., Yang H., Tong Y., Ji H., Chem. Soc. Rev.,2014, 43, 7581 |
[138] | Luo Y., Luo X., Wu G., Li Z., Wang G., Jiang B., Hu Y., Chao T., Ju H., Zhu J., Zhuang Z., Wu Y., Hong X., Li Y., ACS Appl. Mater. Interfaces,2018, 10, 34147 |
[139] | Higgins D., Zamani P., Yu A., Chen Z., Energy Environ. Sci.,2016, 9, 357 |
[140] | Yin H., Zhao S., Zhao K., Muqsit A., Tang H., Chang L., Zhao H., Gao Y., Tang Z., Nat. Commun.,2015, 6, 6430 |
[141] | Yao T., An X., Han H., Chen J. Q., Li C., Adv. Energy Mater.,2018, 8, 1800210 |
[142] | Yao Y., Gu X. K., He D., Li Z., Liu W., Xu Q., Yao T., Lin Y., Wang H. J., Zhao C., Wang X., Yin P., Li H., Hong X., Wei S., Li W. X., Li Y., Wu Y., J. Am. Chem. Soc.,2019, 141, 19964 |
[143] | Chao T., Luo X., Chen W., Jiang B., Ge J., Lin Y., Wu G., Wang X., Hu Y., Zhuang Z., Wu Y., Hong X., Li Y., Angew. Chem. Int. Ed.,2017, 56, 16047 |
[144] | Man I. C., Su H. Y., Calle-Vallejo F., Hansen H. A., Martínez J. I., Inoglu N. G., Kitchin J., Jaramillo T. F., Nørskov J. K., Rossmeisl J., ChemCatChem,2011, 3, 1159 |
[145] | Chu S., Cui Y., Liu N., Nat. Mater.,2016, 16, 16 |
[146] | Cano Z. P., Banham D., Ye S., Hintennach A., Lu J., Fowler M., Chen Z., Nat. Energy,2018, 3, 279 |
[147] | Winther-Jensen B., Winther-Jensen O., Forsyth M., Macfarlane D. R., Science,2008, 321, 671 |
[148] | Buitenwerf R., Rose L., Higgins S. I., Nat. Clim. Change.,2015, 5, 364 |
[149] | Rogers C., Perkins W. S., Veber G., Williams T. E., Cloke R. R., Fischer F. R., J. Am. Chem. Soc.,2017, 139, 4052 |
[150] | Liu S., Tao H., Zeng L., Liu Q., Xu Z., Liu Q., Luo J. L., J. Am. Chem. Soc.,2017, 139, 2160 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||