高等学校化学研究 ›› 2018, Vol. 34 ›› Issue (5): 798-802.doi: 10.1007/s40242-018-7407-8
YU Xiaoping1,2, WANG Qin1, GUO Yafei1,2, DENG Tianlong1
YU Xiaoping1,2, WANG Qin1, GUO Yafei1,2, DENG Tianlong1
摘要: The metastable solubilities and the physicochemical properties including density and pH of the reciprocal quaternary system(LiCl+MgCl2+Li2SO4+MgSO4+H2O) at 348.15 K and 0.1 MPa were determined using the isothermal evaporation method. The dry-salt diagram and water-phase diagram were plotted based on the experimental data. There are five invariant points, eleven univariant curves, and seven crystallization zones corresponding to hexahydrite, tetrahydrite, kieserite, bischofite, lithium sulfate monohydrate, lithium chloride monohydrate and lithium carnallite. Comparison between the stable and metastable diagrams at 348.15 K indicates that the metastable phenomenon of magnesium sulfate is obvious, and the crystallization regions of hexahydrite and tetrahydrite disappear in the stable phase diagram. A comparison of the metastable dry-salt phase diagrams at 308.15, 323.15 and 348.15 K shows that with the increasing of temperature the epsomite crystallization zone disappears from the dry-salt phase diagram of 303.15 K, and a new kieserite crystallization zone is presented at 348.15 K. The density and pH in the metastable equilibrium solution present regular change with the increasing of Jänecke index J(2Li+), and the calculated densities using the empirical equation agree well with the experimental values.